Displaying publications 61 - 80 of 135 in total

Abstract:
Sort:
  1. Zhou D, Gopinath SCB, Mohamed Saheed MS, Siva Sangu S, Lakshmipriya T
    Int J Nanomedicine, 2020;15:10171-10181.
    PMID: 33363373 DOI: 10.2147/IJN.S284752
    Background: In recent years, nanomaterials have justified their dissemination for biosensor application towards the sensitive and selective detections of clinical biomarkers at the lower levels. MXene is a two-dimensional layered transition metal, attractive for biosensing due to its chemical, physical and electrical properties along with the biocompatibility.

    Materials and Methods: This work was focused on diagnosing osteosarcoma (OS), a common bone cancer, on MXene-modified multiple junction triangles by dielectrode sensing. Survivin protein gene is highly correlated with OS, identified on this sensing surface. Capture DNA was immobilized on MXene by using 3-glycidoxypropyltrimethoxysilane as an amine linker and duplexed by the target DNA sequence.

    Results: The limitation and sensitivity of detection were found as 1 fM with the acceptable regression co-efficient value (y=1.0037⨰ + 0.525; R2=0.978) and the current enhancement was noted when increasing the target DNA concentrations. Moreover, the control sequences of single- and triple-mismatched and noncomplementary to the target DNA sequences failed to hybridize on the capture DNA, confirming the specificity. In addition, different batches were prepared with capture probe immobilized sensing surfaces and proved the efficient reproducibility.

    Conclusion: This microgap device with Mxene-modified multiple junction triangles dielectrode surface is beneficial to quantify the survivin gene at its lower level and diagnosing OS complication levels.

    Matched MeSH terms: Nanostructures/chemistry
  2. Chen YW, Lee HV
    Int J Biol Macromol, 2018 Feb;107(Pt A):78-92.
    PMID: 28860064 DOI: 10.1016/j.ijbiomac.2017.08.143
    In the present work, four types of newly chosen municipal solid wastes (Panax ginseng, spent tea residue, waste cotton cloth, and old corrugated cardboard) were studied as the promising sources for nanocellulose, which has efficiently re-engineered the structure of waste products into highly valuable nanocellulose materials. The nanocellulose was produced directly via a facile one-pot oxidative hydrolysis process by using H2O2/Cr(NO3)3 solution as the bleaching agent and hydrolysis medium under acidic condition. The isolated nanocellulose products were well-characterized in terms of chemical composition, product yield, morphological structure and thermal properties. The study has found that the crystallinity index of the obtained nanocellulose products were significantly higher (62.2-83.6%) than that of its starting material due to the successive elimination of lignin, hemicellulose and amorphous regions of cellulose, which were in good agreement with the FTIR analysis. The evidence of the successful production of nanocellulose was given by TEM observation which has revealed the fibril widths were ranging from 15.6 to 46.2nm, with high cellulose content (>90%), depending on the cellulosic origin. The physicochemical properties of processed samples have confirmed that the isolation of high purity nanocellulose materials from different daily spent products is possible. The comparative study can help to provide a deep insight on the possibility of revalorizing the municipal solid wastes into nanocellulose via the simple and versatile one-pot isolation system, which has high potential to be used in commercial applications for sustainable development.
    Matched MeSH terms: Nanostructures/chemistry
  3. Ahmad AL, Abd Shukor SR, Leo CP
    J Nanosci Nanotechnol, 2006 Dec;6(12):3910-4.
    PMID: 17256351
    Polymeric vanadium pentoxide gel was formed via the reaction of V2O5 powder with hydrogen peroxide. The polymeric vanadium pentoxide gel was then dispersed in alumina gel. Different vanadium loading composites were coated on alumina support and calcined at 500 degrees C for 1 hr. These composite layers were characterized using TGA, FT-IR, XRD, SEM, and Autosorb. It was found that the lamellar structure of polymerized vanadium pentoxide was retained in the inorganic matrix. Crystalline alumina in gamma phase was formed after calcinations. However, the vanadium-alumina mixed oxides are lack of the well defined PXRD peaks for polycrystalline V2O5. This is possibly because the vanadia species are highly dispersed in the alumina matrix or the vanadia species are dispersed as crystalline which is smaller than 4 nm. In addition, the imbedded polymeric vanadium oxide improved the specific area and average pore diameter of the composite layer.
    Matched MeSH terms: Nanostructures/chemistry*
  4. Setyawati MI, Kutty RV, Leong DT
    Small, 2016 Oct;12(40):5601-5611.
    PMID: 27571230 DOI: 10.1002/smll.201601669
    Targeted drug delivery is one of the key challenges in cancer nanomedicine. Stoichiometric and spatial control over the antibodies placement on the nanomedicine vehicle holds a pivotal role to overcome this key challenge. Here, a DNA tetrahedral is designed with available conjugation sites on its vertices, allowing to bind one, two, or three cetuximab antibodies per DNA nanostructure. This stoichiometrically definable cetuximab conjugated DNA nanostructure shows enhanced targeting on the breast cancer cells, which results with higher overall killing efficacy of the cancer cells.
    Matched MeSH terms: Nanostructures/chemistry*
  5. Chan SK, Kuzuya A, Choong YS, Lim TS
    SLAS Discov, 2019 01;24(1):68-76.
    PMID: 30063871 DOI: 10.1177/2472555218791743
    The inherent ability of nucleic acids to recognize a complementary pair has gained wide popularity in DNA sensor applications. DNA molecules can be produced in bulk and easily incorporated with various nanomaterials for sensing applications. More complex designs and sophisticated DNA sensors have been reported over the years to allow DNA detection in a faster, cheaper, and more convenient manner. Here, we report a DNA sensor designed to function like a switch to turn "on" silver nanocluster (AgNC) generation in the presence of a specific DNA target. By defining the probe region sequence, we are able to tune the color of the AgNC generated in direct relation to the different targets. As a proof of concept, we used dengue RNA-dependent RNA polymerase conserved sequences from all four serotypes as targets. This method was able to distinguish each dengue serotype by generating the serotype-respective AgNCs. The DNA switch was also able to identify and amplify the correct target in a mixture of targets with good specificity. This strategy has a detection limit of between 1.5 and 2.0 µM depending on the sequence of AgNC. The DNA switch approach provides an attractive alternative for single-target or multiplex DNA detection.
    Matched MeSH terms: Nanostructures/chemistry
  6. Gu Y, Liu L, Guo J, Xiao S, Fang F, Yu X, et al.
    Artif Cells Nanomed Biotechnol, 2021 Dec;49(1):30-37.
    PMID: 33467925 DOI: 10.1080/21691401.2020.1865992
    This research is focussed to quantify IGF1 by electroanalytical analysis on InterDigitated electrode surface and characterized by the microscopic observations. For the detection, antibody and aptamer were used to analyze the level of IGF1. The sandwich pattern (aptamer-IGF1-antibody) was designed on the chemically modified IDE surface and reached the limit of detection to 10 fM with 100 folds enhancement in the sensitivity. Different control experiments (absence of IGF1, binding with IGF2 and with non-complementary aptamer) were failed to show the current changes, discriminated the specific detection. A good detection strategy is to complement the currently following imaging systems for AAA.
    Matched MeSH terms: Nanostructures/chemistry*
  7. Rouhi J, Mamat MH, Ooi CH, Mahmud S, Mahmood MR
    PLoS One, 2015;10(4):e0123433.
    PMID: 25875377 DOI: 10.1371/journal.pone.0123433
    High-density and well-aligned ZnO-ZnS core-shell nanocone arrays were synthesized on fluorine-doped tin oxide glass substrate using a facile and cost-effective two-step approach. In this synthetic process, the ZnO nanocones act as the template and provide Zn2+ ions for the ZnS shell formation. The photoluminescence spectrum indicates remarkably enhanced luminescence intensity and a small redshift in the UV region, which can be associated with the strain caused by the lattice mismatch between ZnO and ZnS. The obtained diffuse reflectance spectra show that the nanocone-based heterostructure reduces the light reflection in a broad spectral range and is much more effective than the bare ZnO nanocone and nanorod structures. Dye-sensitized solar cells based on the heterostructure ZnO-ZnS nanocones are assembled, and high conversion efficiency (η) of approximately 4.07% is obtained. The η improvement can be attributed primarily to the morphology effect of ZnO nanocones on light-trapping and effectively passivating the interface surface recombination sites of ZnO nanocones by coating with a ZnS shell layer.
    Matched MeSH terms: Nanostructures/chemistry
  8. Rusi, Majid SR
    PLoS One, 2016;11(5):e0154566.
    PMID: 27182595 DOI: 10.1371/journal.pone.0154566
    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.
    Matched MeSH terms: Nanostructures/chemistry*
  9. Burham N, Hamzah AA, Majlis BY
    Biomed Mater Eng, 2014;24(6):2203-9.
    PMID: 25226919 DOI: 10.3233/BME-141032
    This paper studies parameters which affect the pore size diameter of a silicon membrane. Electrochemical etching is performed in characterise the parameter involved in this process. The parameter has been studied is volume ratio of hydrofluoric acid (HF) and ethanol as an electrolyte aqueous for electrochemical etch. This electrolyte aqueous solution has been mixed between HF and ethanol with volume ratio 3:7, 5:5, 7:3 and 9:1. As a result, the higher volume of HF in this electrolyte gives the smallest pore size diameter compared to the lower volume of HF. These samples have been dipped into HF and ethanol electrolyte aqueous with supplied 25 mA/cm2 current density for 20, 30, 40, and 50 minutes. The samples will inspect under Scanning Electron Microscope (SEM) to execute the pore formations on silicon membrane surface.
    Matched MeSH terms: Nanostructures/chemistry*
  10. Mahmood S, Taher M, Mandal UK
    Int J Nanomedicine, 2014;9:4331-46.
    PMID: 25246789 DOI: 10.2147/IJN.S65408
    Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon(®) 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a homogeneous distribution and low polydispersity index (0.08). They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 μg/cm(2)/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser scanning microscopy proved an enhanced permeation of coumarin-6-loaded transfersomes, to a depth of approximately160 μM, as compared with rigid liposomes. These ex vivo findings proved that a raloxifene hydrochloride-loaded transfersome formulation could be a superior alternative to oral delivery of the drug.
    Matched MeSH terms: Nanostructures/chemistry*
  11. Geetha Bai R, Muthoosamy K, Shipton FN, Manickam S
    Ultrason Sonochem, 2017 May;36:129-138.
    PMID: 28069192 DOI: 10.1016/j.ultsonch.2016.11.021
    Graphene is one of the highly explored nanomaterials due to its unique and extraordinary properties. In this study, by utilizing a hydrothermal reduction method, graphene oxide (GO) was successfully converted to reduced graphene oxide (RGO) without using any toxic reducing agents. Following this, with the use of ultrasonic cavitation, profoundly stable few layer thick RGO nanodispersion was generated without employing any stabilizers or surfactants. During ultrasonication, shockwaves from the collapse of bubbles cause a higher dispersing energy to the graphene nanosheets which surpass the forces of Van der Waal's and π-π stacking and thus pave the way to form a stable aqueous nanodispersion of graphene. Ultrasonication systems with different power intensity have been employed to determine the optimum conditions for obtaining the most stable RGO dispersion. The optimised conditions of ultrasonic treatments led to the development of a very stable reduced graphene oxide (RGO) aqueous dispersion. The stability was observed for two years and was analyzed by using Zetasizer by measuring the particle size and zeta potential at regular intervals and found to have exceptional stability. The excellent stability at physiological pH promotes its utilization in nano drug delivery application as a carrier for Paclitaxel (Ptx), an anticancer drug. The in vitro cytotoxicity analysis of Ptx loaded RGO nanodispersion by MTT assay performed on the cell lines revealed the potential of the nanodispersion as a suitable drug carrier. Studies on normal lung cells, MRC-5 and nasopharyngeal cancer cells, HK-1 supported the biocompatibility of RGO-Ptx towards normal cell line. This investigation shows the potential of exceptionally stable RGO-Ptx nanodispersion in nano drug delivery applications.
    Matched MeSH terms: Nanostructures/chemistry*
  12. Muthoosamy K, Bai RG, Abubakar IB, Sudheer SM, Lim HN, Loh HS, et al.
    Int J Nanomedicine, 2015;10:1505-19.
    PMID: 25759577 DOI: 10.2147/IJN.S75213
    PURPOSE: A simple, one-pot strategy was used to synthesize reduced graphene oxide (RGO) nanosheets by utilizing an easily available over-the-counter medicinal and edible mushroom, Ganoderma lucidum.

    METHODS: The mushroom was boiled in hot water to liberate the polysaccharides, the extract of which was then used directly for the reduction of graphene oxide. The abundance of polysaccharides present in the mushroom serves as a good reducing agent. The proposed strategy evades the use of harmful and expensive chemicals and avoids the typical tedious reaction methods.

    RESULTS: More importantly, the mushroom extract can be easily separated from the product without generating any residual byproducts and can be reused at least three times with good conversion efficiency (75%). It was readily dispersible in water without the need of ultrasonication or any surfactants; whereas 5 minutes of ultrasonication with various solvents produced RGO which was stable for the tested period of 1 year. Based on electrochemical measurements, the followed method did not jeopardize RGO's electrical conductivity. Moreover, the obtained RGO was highly biocompatible to not only colon (HT-29) and brain (U87MG) cancer cells, but was also viable towards normal cells (MRC-5).

    CONCLUSION: Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of functionalization.

    Matched MeSH terms: Nanostructures/chemistry*
  13. Salman M, Jahan S, Kanwal S, Mansoor F
    Environ Sci Pollut Res Int, 2019 Jul;26(21):21065-21084.
    PMID: 31124071 DOI: 10.1007/s11356-019-05428-z
    The demand for high-quality safe and clean water supply has revolutionized water treatment technologies and become a most focused subject of environmental science. Water contamination generally marks the presence of numerous toxic and harmful substances. These contaminants such as heavy metals, organic and inorganic pollutants, oil wastes, and chemical dyes are discharged from various industrial effluents and domestic wastes. Among several water treatment technologies, the utilization of silica nanostructures has received considerable attention due to their stability, sustainability, and cost-effective properties. As such, this review outlines the latest innovative approaches for synthesis and application of silica nanostructures in water treatment, apart from exploring the gaps that limit their large-scale industrial application. In addition, future challenges for improved water remediation and water quality technologies are keenly discussed.
    Matched MeSH terms: Nanostructures/chemistry*
  14. Albalawi F, Hussein MZ, Fakurazi S, Masarudin MJ
    Int J Nanomedicine, 2021;16:161-184.
    PMID: 33447033 DOI: 10.2147/IJN.S288236
    The emergence of nanotechnology as a key enabling technology over the past years has opened avenues for new and innovative applications in nanomedicine. From the business aspect, the nanomedicine market was estimated to worth USD 293.1 billion by 2022 with a perception of market growth to USD 350.8 billion in 2025. Despite these opportunities, the underlying challenges for the future of engineered nanomaterials (ENMs) in nanomedicine research became a significant obstacle in bringing ENMs into clinical stages. These challenges include the capability to design bias-free methods in evaluating ENMs' toxicity due to the lack of suitable detection and inconsistent characterization techniques. Therefore, in this literature review, the state-of-the-art of engineered nanomaterials in nanomedicine, their toxicology issues, the working framework in developing a toxicology benchmark and technical characterization techniques in determining the toxicity of ENMs from the reported literature are explored.
    Matched MeSH terms: Nanostructures/chemistry*
  15. Alipour E, Alimohammady F, Yumashev A, Maseleno A
    J Mol Model, 2019 Dec 13;26(1):7.
    PMID: 31834504 DOI: 10.1007/s00894-019-4267-1
    Today, drug delivery systems based on nanostructures have become the most efficient to be studied. Recent studies revealed that the fullerenes can be used as drug carriers and transport drugs in a target cell. The aim of the present work is to study the interaction of C60 fullerene containing porphyrin-like transition metal-N4 clusters (TMN4C55, TM = Fe, Co, and Ni) with a non-steroidal anti-inflammatory drug (ibuprofen (Ibp)) by employing the method of the density functional theory. Results showed that the C60 fullerene with TMN4 clusters could significantly enhance the tendency of C60 for adsorption of ibuprofen drug. Also, our ultraviolet-visible results show that the electronic spectra of Ibp/TMN4C55 complexes exhibit a blue shift toward lower wavelengths (higher energies). It was found that the NiN4C55 fullerene had high chemical reactivity, which was important for binding of the drug onto the carrier surface. In order to gain insight into the binding features of Ibp/TMN4C55 complexes, the atoms in molecules analysis was also performed. Our results exhibit the electrostatic features of the Ibp/TMN4C55 bonding. Consequently, this study demonstrated that the TMN4C55 fullerenes could be used as potential carriers for delivery of Ibp drug in the nanomedicine domain. Graphical Abstract The TMN4C55 (TM=Fe, Co, and Ni) fullerenes could be used as potential carriers for delivery of ibuprofen drug in the nanomedicine domain.
    Matched MeSH terms: Nanostructures/chemistry
  16. Hung LC, Basri M, Tejo BA, Ismail R, Nang HL, Abu Hassan H, et al.
    Colloids Surf B Biointerfaces, 2011 Oct 1;87(1):180-6.
    PMID: 21652183 DOI: 10.1016/j.colsurfb.2011.05.019
    Heat-sensitive bioactive compounds such as β-carotene and tocols, are widely used in the pharmaceutical and cosmetic fields. Their chemical stability in delivery systems is one of the major concerns in the production of nanostructured lipid carriers (NLCs). A previously established high-temperature high-pressure homogenisation technique involved in the preparation of NLCs can cause degradation of heat-sensitive compounds. Therefore, a novel preparation process needs to be developed to minimise the degradation of heat-sensitive active compounds during the preparation of NLCs. In this work, modified methods A and B were designed to minimise the degradation of β-carotene and tocols during the production of NLCs. These methods improved the chemical stability of heat-sensitive bioactive compounds (β-carotene and tocols) significantly compared to the previously established method. The physical stability of the formulation was maintained throughout study duration.
    Matched MeSH terms: Nanostructures/chemistry*
  17. Thandavan TM, Gani SM, San Wong C, Md Nor R
    PLoS One, 2015;10(3):e0121756.
    PMID: 25756598 DOI: 10.1371/journal.pone.0121756
    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.
    Matched MeSH terms: Nanostructures/chemistry*
  18. Shamsi S, Alagan AA, Sarchio SNE, Md Yasin F
    Int J Nanomedicine, 2020;15:8311-8329.
    PMID: 33149578 DOI: 10.2147/IJN.S271159
    Background: In the current literature, there are ongoing debates on the toxicity of graphene oxide (GO) that demonstrate contradictory findings regarding its toxicity profile. As a potential drug carrier, these findings are very concerning due to the safety concerns in humans, as well as the dramatic rise of GO being excreted into the environment. Therefore, there is an imperative need to mitigate the potential toxicity of GO to allow for a safer application in the future.

    Purpose: The present study aims to address this issue by functionalizing GO with Pluronic F127 (PF) as a means to mitigate toxicity and resolve the biocompatibility of GO. Although results from previous studies generally indicated that Pluronic functionalized GO exhibits relatively low toxicity to living organisms, reports that emphasize on its toxicity, particularly during embryonic developmental stage, are still scarce.

    Methods: In the present study, two different sizes of native GO samples, GO and NanoGO, as well as PF-functionalized GO, GO-PF and NanoGO-PF, were prepared and characterized using DLS, UV-Vis, Raman spectroscopy, FTIR, and FESEM analyses. Toxicological assessment of all GO samples (0-100 µg/mL) on zebrafish embryonic developmental stages (survival, hatching and heart rates, and morphological changes) was recorded daily for up to 96 hours post-fertilization (hpf).

    Results: The toxicity effects of each GO sample were observed to be higher at increasing concentrations and upon prolonged exposure. NanoGO demonstrated lower toxicity effects compared to GO. GO-PF and NanoGO-PF were also found to have lower toxicity effects compared to native GO samples. GO-PF showed the lowest toxicity response on zebrafish embryo.

    Conclusion: These findings highlight that toxicity is dependent on the concentration, size, and exposure period of GO. Functionalization of GO with PF through surface coating could potentially mitigate the toxicity effects of GO in embryonic developmental stages, but further investigation is warranted for broader future applications.

    Matched MeSH terms: Nanostructures/chemistry
  19. Qian YS, Ramamurthy S, Candasamy M, Shadab M, Kumar RH, Meka VS
    Curr Pharm Biotechnol, 2016;17(6):549-55.
    PMID: 26813303
    CONTEXT: Kaempferol has a large particle size and poor water solubility, leading to poor oral bioavailability. The present work aimed to develop a kaempferol nanosuspension (KNS) to improve pharmacokinetics and absolute bioavailability.

    METHODS: A nanosuspension was prepared using high pressure homogenization (HPH) techniques. The physico-chemical properties of the kaempferol nanosuspension (KNS) were characterized using photon correlation spectroscopy (PCS), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffractometry (XRD). A reversephase high performance liquid chromatography (RP-HPLC) method for the analysis of the drug in rat plasma was developed and validated as per ICH guidelines. In vivo pharmacokinetic parameters of oral pure kaempferol solution, oral kaempferol nanosuspension and intravenous pure kaempferol were assessed in rats.

    RESULTS AND DISCUSSION: The kaempferol nanosuspension had a greatly reduced particle size (426.3 ± 5.8 nm), compared to that of pure kaempferol (1737 ± 129 nm). The nanosuspension was stable under refrigerated conditions. No changes in physico-chemical characteristics were observed. In comparison to pure kaempferol, kaempferol nanosuspension exhibited a significantly (P<0.05) increased in Cmax and AUC(0-∞) following oral administration and a significant improvement in absolute bioavailability (38.17%) compared with 13.03% for pure kaempferol.

    CONCLUSION: These results demonstrate enhanced oral bioavailability of kaempferol when formulated as a nanosuspension.

    Matched MeSH terms: Nanostructures/chemistry
  20. Syahir A, Kajikawa K, Mihara H
    Protein Pept Lett, 2018;25(1):34-41.
    PMID: 29237369 DOI: 10.2174/0929866525666171214111957
    BACKGROUND: Direct bio-monitoring essentially involves optical means since photon has insignificant effects over biomolecules. Over the years, laser induced surface Plasmon resonance method with various modifications as well as versatile localized Plasmon excited by incoherent light have facilitated in recording many nanobiological activities. Yet, monitoring interactions of small molecules including drugs requires signal amplification and improvement on signal-to-noise ratio.

    OBJECTIVES: This paper focused on how the refractive index based nanobio-sensoring gold platform can produce more efficient, adaptable and more practical detection techniques to observe molecular interactions at high degree of sensitivity. It discusses surface chemistry approach, optimisation of the refractive index of gold platform and manipulation of gold geometry augmenting signal quality.

    METHODS: In a normal-incidence reflectivity, r0 can be calculated using the Fresnel equation. Particularly at λ = 470 nm the ratio of r / r0 showed significant amplitude reduction mainly stemmed from the imaginary part of the Au refractive index. Hence, the fraction of reduction, Δr = 1 - r / r0. Experimentally, in a common reference frame reflectivity of a bare gold surface, R0 is compared with the reflectivity of gold surface in the presence of biolayer, R. The reduction rate (%) of reflectivity, ΔR = 1 - R / R0 is denoted as the AR signal. The method therefore enables quantitative measurement of the surface-bound protein by converting ΔR to the thickness, d, and subsequently the protein mass. We discussed four strategies to improve the AR signal by changing the effective refractive index of the biosensing platform. They are; a) Thickness optimisation of Au thin layer, b) Au / Ag bimetallic layer, c) composing alloy or Au composite, and d) Au thinlayer with nano or micro holes.

    RESULTS: As the result we successfully 'move' the refractive index, ε of the AR platform (gold only) to ε = -0.948 + 3.455i, a higher sensitivity platform. This was done by composing Au-Ag2O composite with ratio = 1:1. The results were compared to the potential sensitivity improvement of the AR substrate using other that could be done by further tailoring the ε advanced method.

    CONCLUSION: We suggested four strategies in order to realize this purpose. It is apparent that sensitivity has been improved through Au/Ag bimetallic layer or Au-Ag2O composite thin layer, This study is an important step towards fabrication of sensitive surface for detection of biomolecular interactions.

    Matched MeSH terms: Nanostructures/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links