Displaying publications 61 - 80 of 306 in total

Abstract:
Sort:
  1. Ramakrishnan R, Gimbun J, Ramakrishnan P, Ranganathan B, Reddy SMM, Shanmugam G
    Curr Drug Deliv, 2019;16(10):913-922.
    PMID: 31663478 DOI: 10.2174/1567201816666191029122445
    BACKGROUND: This paper presents the effect of solution properties and operating parameters of polyethylene oxide (PEO) based nanofiber using a wire electrode-based needleless electrospinning.

    METHODS: The feed solution was prepared using a PEO dissolved in water or a water-ethanol mixture. The PEO solution is blended with Bovine Serum Albumin protein (BSA) as a model drug to study the effect of the electrospinning process on the stability of the loaded protein. The polymer solution properties such as viscosity, surface tension, and conductivity were controlled by adjusting the solvent and salt content. The morphology and fiber size distribution of the nanofiber was analyzed using scanning electron microscopy.

    RESULTS: The results show that the issue of a beaded nanofiber can be eliminated either by increasing the solution viscosity or by the addition of salt and ethanol to the PEO-water system. The addition of salt and solvent produced a high frequency of smaller fiber diameter ranging from 100 to 150 nm. The encapsulation of BSA in PEO nanofiber was characterized by three different spectroscopy techniques (i.e. circular dichroism, Fourier transform infrared, and fluorescence) and the results showed the BSA is well encapsulated in the PEO matrix with no changes in the protein structure.

    CONCLUSION: This work may serve as a useful guide for a drug delivery industry to process a nanofiber at a large and continuous scale with a blend of drugs in nanofiber using a wire electrode electrospinning.

    Matched MeSH terms: Polyethylene Glycols/chemistry*
  2. Othman NAF, Selambakkannu S, Abdullah TAT, Hoshina H, Sattayaporn S, Seko N
    Polymers (Basel), 2019 Dec 02;11(12).
    PMID: 31810361 DOI: 10.3390/polym11121994
    This paper investigates the selectivity of GMA-based-non-woven fabrics adsorbent towards copper ion (Cu) functionalized with several aliphatic amines. The aliphatic amines used in this study were ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA). The non-woven polyethylene/polypropylene fabrics (NWF) were grafted with glycidyl methacrylate (GMA) via pre-radiation grafting technique, followed by chemical functionalization with the aliphatic amine. To prepare the ion recognition polymer (IRP), the functionalized amine GMA-grafted-NWF sample was subjected to radiation crosslinking process along with the crosslinking agent, divinylbenzene (DVB), in the presence of Cu ion as a template in the matrix of the adsorbent. Functionalization with different aliphatic amine was carried out at different amine concentrations, grafting yield, reaction temperature, and reaction time to study the effect of different aliphatic amine onto amine density yield. At a concentration of 50% of amine and 50% of isopropanol, EDA, DETA, TETA, and TEPA had attained amine density around 5.12, 4.06, 3.04, and 2.56 mmol/g-ad, respectively. The amine density yield decreases further as the aliphatic amine chain grows longer. The experimental condition for amine functionalization process was fixed at 70% amine, 30% isopropanol, 60 °C for grafting temperature, and 2 h of grafting time for attaining 100% of grafting yield (Dg). The prepared adsorbents were characterized comprehensively in terms of structural and morphology with multiple analytical tools. An adsorptive removal and selectivity of Cu ion by the prepared adsorbent was investigated in a binary metal ion system. The IRP samples with a functional precursor of EDA, the smallest aliphatic amine had given the higher adsorption capacity and selectivity towards Cu ion. The selectivity of IRP samples reduces as the aliphatic amine chain grows longer, EDA to TEPA. However, IRP samples still exhibited remarkably higher selectivity in comparison to the amine immobilized GMA-g-NWF at similar adsorption experimental conditions. This observation indicates that IRP samples possess higher selectivity after incorporation of the ion recognition imprint technique via the radiation crosslinking process.
    Matched MeSH terms: Polyethylene
  3. Harun NH, Mydin RBSMN, Sreekantan S, Saharudin KA, Basiron N, Seeni A
    J Biomater Sci Polym Ed, 2020 10;31(14):1757-1769.
    PMID: 32498665 DOI: 10.1080/09205063.2020.1775759
    The emerging polymer nanocomposites have received industrial interests in diverse fields because of their added value in metal oxide-based nanocomposites, such as titanium (TiO2) and zinc oxide (ZnO). Linear low-density polyethylene (LLDPE)-based polymer has recently generated a huge market in the healthcare industry. TiO2 and ZnO are well known for their instant photocatalytic killing of hospital-acquired infections, especially multidrug-resistant (MDR) pathogens. This study investigated the actions of LLDPE/TiO2/ZnO (1:3) nanocomposites in different weight% against two representative MDR pathogens, namely, methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumonia (K.pneumoniae). Antibacterial activities were quantified according to international standard guidelines of CLSI MO2-A11 (static condition) and ASTM E-2149 (dynamic condition). Preliminary observation via a scanning electron microscope revealed that LLDPE matrix with TiO2/ZnO nanocomposites changed the bacterial morphology and reduced the bacterial adherence and biofilm formation. Furthermore, a high ZnO weight ratio killed both types of pathogens. The bactericidal potential of the nanocomposite is highlighted by the enhancements in photocatalytic activity, zinc ion release and reactive species, and bacteriostatic/bactericidal activity against bacterial growth. This study provides new insights into the MDR-bactericidal potential of LLDPE with TiO2/ZnO nanocomposites for targeted healthcare applications.
    Matched MeSH terms: Polyethylene
  4. Harun NH, Mydin RBSMN, Sreekantan S, Saharuddin KA, Seeni A
    J Biomater Sci Polym Ed, 2021 07;32(10):1301-1311.
    PMID: 33849408 DOI: 10.1080/09205063.2021.1916866
    An innovative nano-base polymer that scavenges radicals and reactive oxygen species exhibits potential antibacterial properties, which are crucial in the biomedical field, particularly in reducing nosocomial infections. However, the safety of this nano-based polymer, which has direct contact with the human system, has not been fully understood. The present study investigated the cytocompatibility and hemocompatibility responses of linear low-density polyethylene polymer (LLDPE) embedded with difference ratios of heterogeneous TiO2/ZnO nanocomposites. Exposure of the blood and fibroblast cells to LLDPE/100Z and LLDPE/25T75Z/10% nanocomposite films for 48 and 72 h decreased their viability by less than 40%, compared with LLDPE, LLDPE/100T and LLDPE/25T75Z/5% nanocomposite films. It also presented possible cellular damage and cytotoxicity, which was supported by the findings from the significant release of extracellular lactate dehydrogenase profiles and cell survival assay Further observation using an electron microscope revealed that LLDPE films with heterogeneous 25T75Z/5% promoted cell adhesion. Moreover, no hemolysis was detected in all ratios of heterogeneous TiO2/ZnO nanocomposite in LLDPE film as it was less than 0.2%, suggesting that these materials were hemocompatible. This study on LLDPE film with heterogeneous TiO2/ZnO nanocomposites demonstrated favorable biocompatible properties that were significant for advanced biomedical polymer application in a hospital setting.
    Matched MeSH terms: Polyethylene*
  5. Makhsin SR, Goddard NJ, Gupta R, Gardner P, Scully PJ
    Anal Chem, 2020 11 17;92(22):14907-14914.
    PMID: 32378876 DOI: 10.1021/acs.analchem.0c00586
    The metal-clad leaky waveguide (MCLW) is an optical biosensor consisting of a metal layer and a low index waveguide layer on a glass substrate. This label-free sensor measures refractive index (RI) changes within the waveguide layer. This work shows the development and optimization of acrylate based-hydrogel as the waveguide layer formed from PEG diacrylate (PEGDA, Mn 700), PEG methyl ether acrylate (PEGMEA, Mn 480), and acrylate-PEG2000-NHS fabricated on a substrate coated with 9.5 nm of titanium. The acrylate-based hydrogel is a synthetic polymer, so properties such as optical transparency, porosity, and hydrogel functionalization by a well-controlled reactive group can be tailored for immobilization of the bioreceptor within the hydrogel matrix. The waveguide sensor demonstrated an equal response to solutions of identical RI containing small (glycerol) and large (bovine serum albumin; BSA) analyte molecules, indicating that the hydrogel waveguide film is highly porous to both sizes of molecule, thus potentially allowing penetration of a range of analytes within the porous matrix. The final optimized MCLW chip was formed from a total hydrogel concentration of 40% v/v of PEGMEA-PEGDA (Mn 700), functionalized with 2.5% v/v of acrylate-PEG2000-NHS. The sensor generated a single-moded waveguide signal with a RI sensitivity of 128.61 ± 0.15° RIU-1 and limit of detection obtained at 2.2 × 10-6 RIU with excellent signal-to-noise ratio for the glycerol detection. The sensor demonstrated RI detection by monitoring changes in the out-coupled angle resulting from successful binding of d-biotin to streptavidin immobilized on functionalized acrylate hydrogel, generating a binding signal of (12.379 ± 0.452) × 10-3°.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  6. Febriyenti, Azmin Mohd. Noor, Saringat Baei
    MyJurnal
    The objective of this research was to formulate an aerosol concentrate containing haruan (Channa
    striatus) water extract that would produce a thin film when sprayed onto a wound and could be used for wound dressing. The aerosol concentrates were formulated with various polymer and plasticiser mixtures and tested in dispersion systems. The polymers evaluated were hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Sodium), acacia, tragacanth, chitosan, gelatine and gelatine (bloom 151–160), all at concentrations of 2%. The plasticisers evaluated were polyethylene glycol (PEG) 400 and 4000, glycerine, propylene glycol, and triacetin. Films were prepared from film-forming dispersions by casting techniques. Film-forming dispersions were characterised in terms of pH, density, surface tension, rheological properties, particle size distribution, and tackiness. Based on these evaluations, HPMC was chosen as the best polymer. It produced a film with the expected qualities and was easy to reproduce in the form of dispersions or as thin transparent films. Glycerine was judged as the most appropriate plasticiser because it produced the concentrate having the desired qualities and properties expected from an aerosol concentrate.
    Matched MeSH terms: Polyethylene Glycols
  7. Carcao M, Zak M, Abdul Karim F, Hanabusa H, Kearney S, Lu MY, et al.
    J Thromb Haemost, 2016 Aug;14(8):1521-9.
    PMID: 27174727 DOI: 10.1111/jth.13360
    Essentials Nonacog beta pegol is a recombinant glycoPEGylated factor IX with an extended half-life. This phase 3 trial investigated its safety/efficacy in previously treated hemophilia B boys ≤ 12 years. A 40 IU kg(-1) dose provided effective once-weekly prophylaxis and hemostasis when used to treat bleeds. Nonacog beta pegol was well tolerated in previously treated boys ≤ 12 years with hemophilia B.

    SUMMARY: Background Nonacog beta pegol is a recombinant glycoPEGylated factor IX with an extended half-life, developed to improve care for patients with hemophilia B. Objectives To investigate the safety, efficacy and pharmacokinetics of nonacog beta pegol for the prophylaxis and treatment of bleeds in previously treated children with hemophilia B. Patients/Methods This phase 3 trial, paradigm(™) 5, enrolled and treated 25 children (aged ≤ 12 years) with hemophilia B (FIX ≤ 2%). Patients were stratified by age (0-6 years and 7-12 years), and received once-weekly prophylaxis with 40 IU kg(-1) nonacog beta pegol for 50 exposure days. Results No patient developed inhibitors, and no safety concerns were identified. Forty-two bleeds in 15 patients were reported to have been treated; the overall success rate was 92.9%, and most bleeds (85.7%) resolved after one dose. The median annualized bleeding rates (ABRs; bleeds per patient per year) were 1.0 in the total population, 0.0 in the 0-6-year group, and 2.0 in the 7-12-year group; the estimated mean ABRs were 1.44 in the total population, 0.87 in the 0-6-year group, and 1.88 in the 7-12-year group. For 22 patients who had previously been receiving prophylaxis, the estimated mean ABR was 1.38 versus a historical ABR of 2.51. Estimated mean steady-state FIX trough levels were 0.153 IU mL(-1) (0-6 years) and 0.190 IU mL(-1) (7-12 years). Conclusion Nonacog beta pegol was well tolerated in previously treated children with hemophilia B; a 40 IU kg(-1) dose provided effective once-weekly prophylaxis and hemostasis when bleeds were treated.

    Matched MeSH terms: Polyethylene Glycols/pharmacokinetics*; Polyethylene Glycols/therapeutic use
  8. Karami A, Golieskardi A, Choo CK, Romano N, Ho YB, Salamatinia B
    Sci Total Environ, 2017 Feb 01;578:485-494.
    PMID: 27836345 DOI: 10.1016/j.scitotenv.2016.10.213
    So far, several classes of digesting solutions have been employed to extract microplastics (MPs) from biological matrices. However, the performance of digesting solutions across different temperatures has never been systematically investigated. In the first phase of the present study, we measured the efficiency of different oxidative agents (NaClO or H2O2), bases (NaOH or KOH), and acids [HCl or HNO3; concentrated and diluted (5%)] in digesting fish tissues at room temperature (RT, 25°C), 40, 50, or 60°C. In the second phase, the treatments that were efficient in digesting the biological materials (>95%) were evaluated for their compatibility with eight major plastic polymers (assessed through recovery rate, Raman spectroscopy analysis, and morphological changes). Among the tested solutions, NaClO, NaOH, and diluted acids did not result in a satisfactory digestion efficiency at any of the temperatures. The H2O2 treatment at 50°C efficiently digested the biological materials, although it decreased the recovery rate of nylon-6 (NY6) and nylon-66 (NY66) and altered the colour of polyethylene terephthalate (PET) fragments. Similarly, concentrated HCl and HNO3 treatments at RT fully digested the fish tissues, but also fully dissolved NY6 and NY66, and reduced the recovery rate of most or all of the polymers, respectively. Potassium hydroxide solution fully eliminated the biological matrices at all temperatures. However, at 50 and 60°C, it degraded PET, reduced the recovery rate of PET and polyvinyl chloride (PVC), and changed the colour of NY66. According to our results, treating biological materials with a 10% KOH solution and incubating at 40°C was both time and cost-effective, efficient in digesting biological materials, and had no impact on the integrity of the plastic polymers. Furthermore, coupling this treatment with NaI extraction created a promising protocol to isolate MPs from whole fish samples.
    Matched MeSH terms: Polyethylene Terephthalates
  9. Ruszymah BH, Chua K, Latif MA, Hussein FN, Saim AB
    Int J Pediatr Otorhinolaryngol, 2005 Nov;69(11):1489-95.
    PMID: 15941595
    Treatment and management of congenital as well as post-traumatic trachea stenosis remains a challenge in pediatric surgery. The aim of this study was to reconstruct a trachea with human nasal septum chondrocytes by using the combination of biodegradable hydrogel and non-biodegradable high-density polyethylene (HDP) as the internal predetermined shape scaffold.
    Matched MeSH terms: Polyethylene
  10. Jamil M, Mustafa IS, Ahmed NM, Sahul Hamid SB
    Biomater Adv, 2022 Dec;143:213178.
    PMID: 36368056 DOI: 10.1016/j.bioadv.2022.213178
    Biocompatible polymers have received significant interest from researchers for their potential in diagnostic applications. This type of polymer can perform with an appropriate host response or carrier for a specific purpose. The current study aims to fabricate and characterise poly(ethylene) oxide (PEO) nanofibres with different concentrations for cytotoxicity evaluation in human breast cancer cell lines (MCF-7) and to get an optimal PEO nanofibre concentration (permissible limit) as a suitable polymer matrix or carrier with potential use in diagnostic applications. The fabrication of PEO nanofibres was done using electrospinning and was characterised by structure and morphology, surface roughness, chemical bonding and release profiles. The functional effects of PEO nanofibres were evaluated with MTS assay and colony formation assay in MCF-7 cells. The results showed that viscosity plays a vital role in synthesising a polymer solution in electrospinning for producing beadless nanofibrous mats ranging from 4.7 Pa·s to 77.7 Pa·s. As the PEO concentration increases, the nanofibre diameter and thickness will increase, but the surface roughness will be decreased. The average fibre diameter for 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 129 ± 70 nm, 185 ± 55 nm and 192 ± 53 nm, respectively. In addition, the fibre thickness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 269 ± 3 μm, 664 ± 4 μm, 758 ± 7 μm and 1329 ± 44 μm, respectively. Contrarily, the surface roughness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 55.6 ± 9 nm, 42.8 ± 6 nm, 42.7 ± 7 nm and 36.6 ± 1 nm, respectively. PEO nanofibres showed the same burst release pattern and rate due to the same molecular weight of PEO with a stable release rate profile after 15 min. It also demonstrates that the percentage of PEO nanofibre release increased with the increasing PEO concentration due to the fibre diameter and thickness. The findings showed that all PEO nanofibres formulations were non-toxic to MCF-7 cells. It is suggested that 5 wt% PEO nanofibre exhibited non-cytotoxic characteristics by maintaining the cell viability from dose 0-1000 μg/ml and did not induce the number of colonies. Therefore, 5 wt% PEO nanofibre is the optimal nanofibre concentration and was suggested as a suitable base polymer matrix or carrier with potential use for diagnostic purposes. The findings in this study have demonstrated the influence of cell growth and viability, including the effects of PEO nanofibre formulations on cancer progress characteristics to achieve a permissible PEO nanofibre concentration limit that can be a benchmark in medical applications, particularly diagnostic applications.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  11. Mohamed MI, Mohammad MK, Abdul Razak HR, Abdul Razak K, Saad WM
    Biomed Res Int, 2015;2015:183525.
    PMID: 26075217 DOI: 10.1155/2015/183525
    Emerging syntheses and findings of new metallic nanoparticles (MNPs) have become an important aspect in various fields including diagnostic imaging. To date, iodine has been utilized as a radiographic contrast medium. However, the raise concern of iodine threats on iodine-intolerance patient has led to search of new contrast media with lower toxic level. In this animal modeling study, 14 nm iron oxide nanoparticles (IONPs) with silane-polyethylene glycol (SiPEG) and perchloric acid have been assessed for toxicity level as compared to conventional iodine. The nanotoxicity of IONPs was evaluated in liver biochemistry, reactive oxygen species production (ROS), lipid peroxidation mechanism, and ultrastructural evaluation using transmission electron microscope (TEM). The hematological analysis and liver function test (LFT) revealed that most of the liver enzymes were significantly higher in iodine-administered group as compared to those in normal and IONPs groups (P < 0.05). ROS production assay and lipid peroxidation indicator, malondialdehyde (MDA), also showed significant reductions in comparison with iodine group (P < 0.05). TEM evaluation yielded the aberration of nucleus structure of iodine-administered group as compared to those in control and IONPs groups. This study has demonstrated the less toxic properties of IONPs and it may postulate that IONPs are safe to be applied as radiographic contrast medium.
    Matched MeSH terms: Polyethylene Glycols
  12. NURUL AIMI NADIA IBRAHIM, MOHAMAD AWANG, SURIANI MAT JUSOH
    MyJurnal
    Renewable materials have some bearing on the environment and have since increased research works related to polymer composites. This work was conducted to investigate the effects of interwoven kenaf fibres and the use of kenaf fibres in composites. In this research, interwoven between kenaf and polyethylene terephthalate (PET) was prepared and epoxy was used as the polymer matrix to form composites. The kenaf fibre composites with various kenaf fibre contents (2, 5, 8, and 10 wt %) interwoven with (PET) fibres were prepared by using open mould method. The properties of kenaf/PET/epoxy composites (KPTE) were studied. The kenaf fibre composites characterization was determined based on their mechanical properties, water absorption, morphology and thermal properties. The tensile strength test was performed using Testometric machine. The finding shows that the strength increases as the amount of kenaf fibres in the composites increases. The composites with 10% kenaf fibres interwoven PET displayed the highest tensile strength (85.3 ± 2.9 MPa) while unfilled epoxy show the lowest tensile strength (64.1 ± 16.5 MPa). The addition of kenaf fibres minimally increases the water absorption up to about 1.4%. The increases of kenaf fibres also reduces the overall thermal stability of the composites compared to the PET and epoxy resin composites. The morphology properties of KPTE composites support the tensile properties surface of the composites. This study assists to propose the kenaf fibres as a potential filler for properties improvements in epoxy-based composites contributing to the development of another environment-friendly material.
    Matched MeSH terms: Polyethylene Terephthalates
  13. Aji, I.S., Zinudin, E.S., Khairul, M.Z., Abdan, K., S. M. Sapuan
    MyJurnal
    Electron beam irradiation, without any addition of cross-linking agents, was investigated at varying
    doses of EB-Irradiation to develop an environmentally friendly hybridized kenaf (bast)/ pineapple leaf
    fibre (PALF) bio-composites. Improvement in tensile property of the hybrid was achieved with the result
    showing a direct proportionality relationship between tensile properties and increasing radiation dose.
    Statistical analysis software (SAS) was employed to validate the result. HDPE has been shown to have
    self-cross-linked, enabling interesting tensile properties with irradiation. Statistical analysis validated
    the results obtained and also showed that adequate mixing of fibres and matrix had taken place at 95%
    confidence level. Hybridization and subsequent irradiation increased the tensile strength and modulus
    of HDPE up to 31 and 185%, respectively, at about 100kGy. Meanwhile, SEM was used to view the
    interaction between the fibres and matrix.
    Matched MeSH terms: Polyethylene
  14. Amini R, Jalilian FA, Abdullah S, Veerakumarasivam A, Hosseinkhani H, Abdulamir AS, et al.
    Appl Biochem Biotechnol, 2013 Jun;170(4):841-53.
    PMID: 23615733 DOI: 10.1007/s12010-013-0224-0
    Leukemic cells are hard-to-transfect cell lines. Many transfection reagents which can provide high gene transfer efficiency in common adherent cell lines are not effective to transfect established blood cell lines or primary leukemic cells. This study aims to examine a new class of cationic polymer non-viral vector, PEGylated-dextran-spermine (PEG-D-SPM), to determine its ability to transfect the leukemic cells. Here, the optimal conditions of the complex preparation (PEG-D-SPM/plasmid DNA (pDNA)) were examined. Different weight-mixing (w/w) ratios of PEG-D-SPM/pDNA complex were prepared to obtain an ideal mixing ratio to protect encapsulated pDNA from DNase degradation and to determine the optimal transfection efficiency of the complex. Strong complexation between polymer and pDNA in agarose gel electrophoresis and protection of pDNA from DNase were detected at ratios from 25 to 15. Highest gene expression was detected at w/w ratio of 18 in HL60 and K562 cells. However, gene expression from both leukemic cell lines was lower than the control MCF-7 cells. The cytotoxicity of PEG-D-SPM/pDNA complex at the most optimal mixing ratios was tested in HL60 and K562 cells using MTS assay and the results showed that the PEG-D-SPM/pDNA complex had no cytotoxic effect on these cell lines. Spherical shape and nano-nature of PEG-D-SPM/pDNA complex at ratio 18 was observed using transmission electron microscopy. As PEG-D-SPM showed modest transfection efficiency in the leukemic cell lines, we conclude that further work is needed to improve the delivery efficiency of the PEG-D-SPM.
    Matched MeSH terms: Polyethylene Glycols/pharmacology*; Polyethylene Glycols/chemistry
  15. Shafie H, Syed Zakaria SZ, Adli A, Shareena I, Rohana J
    Pediatr Int, 2017 Jul;59(7):776-780.
    PMID: 28370991 DOI: 10.1111/ped.13285
    BACKGROUND: Occlusive body wrap using polyethylene plastic applied immediately after birth had been shown to reduce hypothermia among preterm infants. Various adjunct methods have been studied in an attempt to further reduce the incidence of hypothermia. This study was conducted to determine whether polyethylene cap is more effective than cotton cap as an adjunct to polyethylene occlusive body wrap in reducing hypothermia in preterm infants.

    METHODS: The subjects consisted of preterm infants 24-34 weeks' gestation born at Universiti Kebangsaan Malaysia Medical Centre. Infants were randomly assigned to NeoCap or control groups. Infants in both groups were wrapped in polyethylene sheets from the neck downwards immediately after birth without prior drying. Infants in the control group had their heads dried and subsequently covered with cotton caps while infants in the NeoCap group had polyethylene caps put on without drying. Axillary temperature was measured on admission to the neonatal intensive care unit (NICU), and after having been stabilized in the incubator.

    RESULTS: Among the 80 infants recruited, admission hypothermia (axillary temperature <36.5°C) was present in 37 (92.5%) and in 40 (100%) in the NeoCap and control groups, respectively. There was no significant difference in mean temperature on NICU admission between the two groups (35.3 vs 35.1°C, P = 0.36). Mean post-stabilization temperature, however, was significantly higher in the NeoCap group (36.0 vs 35.5°C, P = 0.01).

    CONCLUSION: Combined use of polyethylene body wrap and polyethylene cap was associated with a significantly higher mean post-stabilization temperature compared with polyethylene body wrap and cotton cap.

    Matched MeSH terms: Polyethylene*
  16. Seow EL, Robert Ding PH
    Med J Malaysia, 2005 Dec;60(5):637-41.
    PMID: 16515116
    This was an open-label, uncontrolled study with the aim of assessing the efficacy and safety of pegylated interferon alfa-2b plus ribavirin in the treatment of chronic hepatitis C. The study was conducted in Island Hospital, Penang beween January 2002 and December 2003. Thirty-three patients were enrolled in this study with ten defaulters. The overall sustained virological response (SVR) (Intention-To-Treat analysis) in naïve patients was 39.10%. However, when the study was adjusted to only include those who completed treatment and follow-up, overall SVR as 52.9%. Side-effects were tolerable in most patients with anaemia occurring in 22 patients (66.7%), leukopenia 23 patients (69.7%) and thrombocytopenia in 15 patients (45.5%). This study showed that pegylated interferon alfa-2b 1.5 mcg/kg/week plus ribavirin > 10.6 mg/kg/day is efficacious and safe to be used in the treatment of: chronic hepatitis C.
    Matched MeSH terms: Polyethylene Glycols
  17. Salleh AB, Basri M, Taib M, Jasmani H, Rahman RN, Rahman MB, et al.
    Appl Biochem Biotechnol, 2002 10 25;102-103(1-6):349-57.
    PMID: 12396136
    Recent studies on biocatalysis in water-organic solvent biphasic systems have shown that many enzymes retain their catalytic activities in the presence of high concentrations of organic solvents. However, not all enzymes are organic solvent tolerant, and most have limited and selective tolerance to particular organic solvents. Protein modification or protein tailoring is an approach to alter the characteristics of enzymes, including solubility in organic solvents. Particular amino acids may play pivotal roles in the catalytic ability of the protein. Attaching soluble modifiers to the protein molecule may alter its conformation and the overall polarity of the molecule. Enzymes, in particular lipases, have been chemically modified by attachment of aldehydes, polyethylene glycols, and imidoesters. These modifications alter the hydrophobicity and conformation of the enzymes, resulting in changes in the microenvironment of the enzymes. By these modifications, newly acquired properties such as enhancement of activity and stability and changes in specificity and solubility in organic solvents are obtained. Modified lipases were found to be more active and stable in organic solvents. The optimum water activity (a(w)) for reaction was also shifted by using modified enzymes. Changes in enantioselective behavior were also observed.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  18. Hanafi Ismail, Rohani Abdul Majid, Razaina Mat Taib
    MyJurnal
    Linear density polyethylene (LDPE)/thermoplastic sago starch (TPSS), blended with and without the addition of compatibilizer [Polyethylene-grafted-Maleic Anhydride, (PE-g-MA)] were prepared for soil burial test. The test was conducted in the natural soil environment for 3 and 6 months. Different loading of TPSS (10, 20, 30, 40, and 50 wt. %) were used in this study. After soil burial, the blends were evaluated for their tensile properties and scanning electron microscopy (SEM) to observe the surface morphology properties after the test. For LDPE/TPSS, it was observed that the tensile strength decreased with the increase of soil burial time, as well as Young modulus and elongation at break (EB). The LDPE/TPSS/PE-g-MA also showed the same trend for the tensile properties, but with higher properties as compared to uncompatibilized blends. The tensile properties also decreased with the increase in the TPSS loading for both the LDPE/TPSS and LDPE/TPSS/PE-g-MA. Meanwhile,
    the scanning electron microscopy (SEM) on the blend surfaces after the soil burial test showed that degradability increased with the increase in the exposure time as well as the TPSS loading.
    Matched MeSH terms: Polyethylene
  19. Koupaei Malek S, Gabris MA, Hadi Jume B, Baradaran R, Aziz M, Karim KJBA, et al.
    Daru, 2019 Jun;27(1):9-20.
    PMID: 30554368 DOI: 10.1007/s40199-018-0232-2
    Polyethylene glycol functionalized with oxygenated multi-walled carbon nanotubes (O-PEG-MWCNTs) as an efficient nanomaterial for the in vitro adsorption/release of curcumin (CUR) anticancer agent. The synthesized material was morphologically characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the CUR adsorption process was assessed with kinetic and isotherm models fitting well with pseudo-second order and Langmuir isotherms. The results showed that the proposed O-PEG-MWCNTs has a high adsorption capacity for CUR (2.0 × 103 mg/g) based on the Langmuir model. The in vitro release of CUR from O-PEG-MWCNTs was studied in simulating human body fluids with different pHs (ABS pH 5, intestinal fluid pH 6.6 and body fluid pH 7.4). Lastly, to confirm the success compliance of the O-PEG-MWCNT nanocomposite as a drug delivery system, the parameters affecting the CUR release such as temperature and PEG content were investigated. As a result, the proposed nanocomposite could be used as an efficient carrier for CUR delivery with an enhanced prolonged release property. Graphical Abstract ᅟ.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  20. Zulkifley MA, Mustafa MM, Hussain A, Mustapha A, Ramli S
    PLoS One, 2014;9(12):e114518.
    PMID: 25485630 DOI: 10.1371/journal.pone.0114518
    Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed.
    Matched MeSH terms: Polyethylene Terephthalates/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links