Displaying publications 61 - 80 of 120 in total

Abstract:
Sort:
  1. Ong SCL, Mohaidin N
    BMJ Case Rep, 2018 Sep 30;2018.
    PMID: 30275028 DOI: 10.1136/bcr-2018-227121
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  2. Saha P, Mukherjee D, Singh PK, Ahmadian A, Ferrara M, Sarkar R
    Sci Rep, 2021 04 15;11(1):8304.
    PMID: 33859222 DOI: 10.1038/s41598-021-87523-1
    COVID-19, a viral infection originated from Wuhan, China has spread across the world and it has currently affected over 115 million people. Although vaccination process has already started, reaching sufficient availability will take time. Considering the impact of this widespread disease, many research attempts have been made by the computer scientists to screen the COVID-19 from Chest X-Rays (CXRs) or Computed Tomography (CT) scans. To this end, we have proposed GraphCovidNet, a Graph Isomorphic Network (GIN) based model which is used to detect COVID-19 from CT-scans and CXRs of the affected patients. Our proposed model only accepts input data in the form of graph as we follow a GIN based architecture. Initially, pre-processing is performed to convert an image data into an undirected graph to consider only the edges instead of the whole image. Our proposed GraphCovidNet model is evaluated on four standard datasets: SARS-COV-2 Ct-Scan dataset, COVID-CT dataset, combination of covid-chestxray-dataset, Chest X-Ray Images (Pneumonia) dataset and CMSC-678-ML-Project dataset. The model shows an impressive accuracy of 99% for all the datasets and its prediction capability becomes 100% accurate for the binary classification problem of detecting COVID-19 scans. Source code of this work can be found at GitHub-link .
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  3. Fallahpoor M, Chakraborty S, Heshejin MT, Chegeni H, Horry MJ, Pradhan B
    Comput Biol Med, 2022 Jun;145:105464.
    PMID: 35390746 DOI: 10.1016/j.compbiomed.2022.105464
    BACKGROUND: Artificial intelligence technologies in classification/detection of COVID-19 positive cases suffer from generalizability. Moreover, accessing and preparing another large dataset is not always feasible and time-consuming. Several studies have combined smaller COVID-19 CT datasets into "supersets" to maximize the number of training samples. This study aims to assess generalizability by splitting datasets into different portions based on 3D CT images using deep learning.

    METHOD: Two large datasets, including 1110 3D CT images, were split into five segments of 20% each. Each dataset's first 20% segment was separated as a holdout test set. 3D-CNN training was performed with the remaining 80% from each dataset. Two small external datasets were also used to independently evaluate the trained models.

    RESULTS: The total combination of 80% of each dataset has an accuracy of 91% on Iranmehr and 83% on Moscow holdout test datasets. Results indicated that 80% of the primary datasets are adequate for fully training a model. The additional fine-tuning using 40% of a secondary dataset helps the model generalize to a third, unseen dataset. The highest accuracy achieved through transfer learning was 85% on LDCT dataset and 83% on Iranmehr holdout test sets when retrained on 80% of Iranmehr dataset.

    CONCLUSION: While the total combination of both datasets produced the best results, different combinations and transfer learning still produced generalizable results. Adopting the proposed methodology may help to obtain satisfactory results in the case of limited external datasets.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  4. Kundu R, Basak H, Singh PK, Ahmadian A, Ferrara M, Sarkar R
    Sci Rep, 2021 Jul 08;11(1):14133.
    PMID: 34238992 DOI: 10.1038/s41598-021-93658-y
    COVID-19 has crippled the world's healthcare systems, setting back the economy and taking the lives of several people. Although potential vaccines are being tested and supplied around the world, it will take a long time to reach every human being, more so with new variants of the virus emerging, enforcing a lockdown-like situation on parts of the world. Thus, there is a dire need for early and accurate detection of COVID-19 to prevent the spread of the disease, even more. The current gold-standard RT-PCR test is only 71% sensitive and is a laborious test to perform, leading to the incapability of conducting the population-wide screening. To this end, in this paper, we propose an automated COVID-19 detection system that uses CT-scan images of the lungs for classifying the same into COVID and Non-COVID cases. The proposed method applies an ensemble strategy that generates fuzzy ranks of the base classification models using the Gompertz function and fuses the decision scores of the base models adaptively to make the final predictions on the test cases. Three transfer learning-based convolutional neural network models are used, namely VGG-11, Wide ResNet-50-2, and Inception v3, to generate the decision scores to be fused by the proposed ensemble model. The framework has been evaluated on two publicly available chest CT scan datasets achieving state-of-the-art performance, justifying the reliability of the model. The relevant source codes related to the present work is available in: GitHub.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  5. Chew YK, Noorizan Y, Khir A, Brito-Mutunayagam S, Prepageran N
    Singapore Med J, 2009 Nov;50(11):e374-5.
    PMID: 19960147
    The incidence of mucocoeles associated with a non-surgically treated nasal polyposis is rare. We report a rare case of nasal polyposis with asymptomatic frontal mucocoeles in a 28-year-old Malay man who presented with bilateral nasal obstruction with anosmia. Physical examination revealed bilateral grade III nasal polyps causing obstruction. Computed tomography revealed paranasal polyposis with a large polyp extending and expanding the posterior table of the frontal sinus causing erosion and thinning of its wall. Marsupialisation of the mucocoele and nasal polypectomy were done. Endoscopic sinus surgery and marsupialisation should be the treatment of choice for asymptomatic frontal mucocoele.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  6. Rasmussen LD, Pedersen C, Madsen HD, Laursen CB
    BMJ Case Rep, 2017 Nov 29;2017.
    PMID: 29191821 DOI: 10.1136/bcr-2017-221025
    A 36-year-old Danish man, living in Asia, was diagnosed with Pneumocystis pneumonia (PCP) and HIV in 2013 (CD4+ count: 6 cells/µL; viral load: 518 000 copies/mL). He initiated combination antiretroviral therapy. Later that year, he was also diagnosed with granulomatosis with polyangiitis and was treated with prednisolone. Despite complete viral suppression and increasing CD4+ count (162 cells/µL), he was readmitted with PCP in April 2015. Subsequently, he returned to Denmark (CD4+ count: 80 cells/µL, viral suppression). Over the following months, he developed progressive dyspnoea. Lung function tests demonstrated severely reduced lung capacity with an obstructive pattern and a moderately reduced diffusion capacity. High resolution computer tomography revealed minor areas with tree-in-bud pattern and no signs of air trapping on expiratory views. Lung biopsy showed lymphocytic infiltration surrounding the bronchioles with sparing of the alveolar septa. He was diagnosed with follicular bronchiolitis. The patient spontaneously recovered along with an improvement of the immune system.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  7. Rais NNM, Bradley DA, Hashim A, Osman ND, Noor NM
    Appl Radiat Isot, 2019 Nov;153:108810.
    PMID: 31351374 DOI: 10.1016/j.apradiso.2019.108810
    For a range of doses familiarly incurred in computed tomography (CT), study is made of the performance of Germanium (Ge)-doped fibre dosimeters formed into cylindrical and flat shapes. Indigenously fabricated 2.3 mol% and 6 mol% Ge-dopant concentration preforms have been used to produce flat- and cylindrical-fibres (FF and CF) of various size and diameters; an additional 4 mol% Ge-doped commercial fibre with a core diameter of 50 μm has also been used. The key characteristics examined include the linearity index f(d), dose sensitivity and minimum detectable dose (MDD), the performance of the fibres being compared against that of lithium-fluoride based TLD-100 thermoluminescence (TL) dosimeters. For doses in the range 2-40 milligray (mGy), delivered at constant potential of 120 kilovoltage (kV), both the fabricated and commercial fibres demonstrate supralinear behaviours at doses  4 mGy. In terms of dose sensitivity, all of the fibres show superior TL sensitivity when compared against TLD-100, the 2.3 mol% and 6 mol% Ge-doped FF demonstrating the greatest TL sensitivity at 84 and 87 times that of TLD-100. The TL yields for the novel Ge-doped silica glass render them appealing for use within the present medical imaging dose range, offering linearity at high sensitivity down to less than 2 mGy.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  8. Tan D, Mohamad NA, Wong YH, Yeong CH, Cheah PL, Sulaiman N, et al.
    Int J Hyperthermia, 2019;36(1):554-561.
    PMID: 31132888 DOI: 10.1080/02656736.2019.1610800
    Purpose: This study aimed to evaluate the effects of various computed tomography (CT) acquisition parameters and metal artifacts on CT number measurement for CT thermometry during CT-guided thermal ablation. Methods: The effects of tube voltage (100-140 kVp), tube current (20-250 mAs), pitch (0.6-1.5) and gantry rotation time (0.5, 1.0 s) as well as metal artifacts from a radiofrequency ablation (RFA) needle on CT number were evaluated using liver tissue equivalent polyacrylamide (PAA) phantom. The correlation between CT number and temperature from 37 to 80 °C was studied on PAA phantom using optimum CT acquisition parameters. Results: No statistical significant difference (p > 0.05) was found on CT numbers under the variation of different acquisition parameters for the same temperature setting. On the other hand, the RFA needle has induced metal artifacts on the CT images of up to 8 mm. The CT numbers decreased linearly when the phantom temperature increased from 37 to 80 °C. A linear regression analysis on the CT numbers and temperature suggested that the CT thermal sensitivity was -0.521 ± 0.061 HU/°C (R2 = 0.998). Conclusion: CT thermometry is feasible for temperature assessment during RFA with the current CT technology, which produced a high CT number reproducibility and stable measurement at different CT acquisition parameters. Despite being affected by metal artifacts, the CT-based thermometry could be further developed as a tissue temperature monitoring tool during CT-guided thermal ablation.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  9. Kumaran A, Chan A, Yong K, Shen S
    Orbit, 2019 Apr;38(2):95-102.
    PMID: 29482415 DOI: 10.1080/01676830.2018.1441316
    AIM: To describe differences in the deep lateral orbital wall (specifically, trigone) between Chinese, Malay, Indian and Caucasian subjects Methods: Single-centre retrospective Computed Tomogram (CT)-based study; 20 subjects of each ethnicity were used from existing databases, matched for gender, average age and laterality. Subjects below 16 years of age were excluded. DICOM image viewing software CARESTREAM Vue PACS (Carestream Health Inc., USA) and OsiriX version 7.5 (Pixmeo., Switzerland) were used to measure deep lateral wall length, thickness and volume, as well as orbital depth and statistical analyses performed using Statistical Package for Social Sciences version 21 (IBM, USA).

    RESULTS: In each group, there were 12 males (60%) and average age was not significantly different (p = 0.682-0.987). Using Chinese subjects as a reference, in Chinese, Malay, Indian and Caucasian subjects, mean trigone thickness was 13.68, 14.02, 11.60 (p 

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  10. Chong B, Jayabaskaran J, Ruban J, Goh R, Chin YH, Kong G, et al.
    Circ Cardiovasc Imaging, 2023 May;16(5):e015159.
    PMID: 37192298 DOI: 10.1161/CIRCIMAGING.122.015159
    BACKGROUND: Epicardial adipose tissue (EAT) has garnered attention as a prognostic and risk stratification factor for cardiovascular disease. This study, via meta-analyses, evaluates the associations between EAT and cardiovascular outcomes stratified across imaging modalities, ethnic groups, and study protocols.

    METHODS: Medline and Embase databases were searched without date restriction on May 2022 for articles that examined EAT and cardiovascular outcomes. The inclusion criteria were (1) studies measuring EAT of adult patients at baseline and (2) reporting follow-up data on study outcomes of interest. The primary study outcome was major adverse cardiovascular events. Secondary study outcomes included cardiac death, myocardial infarction, coronary revascularization, and atrial fibrillation.

    RESULTS: Twenty-nine articles published between 2012 and 2022, comprising 19 709 patients, were included in our analysis. Increased EAT thickness and volume were associated with higher risks of cardiac death (odds ratio, 2.53 [95% CI, 1.17-5.44]; P=0.020; n=4), myocardial infarction (odds ratio, 2.63 [95% CI, 1.39-4.96]; P=0.003; n=5), coronary revascularization (odds ratio, 2.99 [95% CI, 1.64-5.44]; P<0.001; n=5), and atrial fibrillation (adjusted odds ratio, 4.04 [95% CI, 3.06-5.32]; P<0.001; n=3). For 1 unit increment in the continuous measure of EAT, computed tomography volumetric quantification (adjusted hazard ratio, 1.74 [95% CI, 1.42-2.13]; P<0.001) and echocardiographic thickness quantification (adjusted hazard ratio, 1.20 [95% CI, 1.09-1.32]; P<0.001) conferred an increased risk of major adverse cardiovascular events.

    CONCLUSIONS: The utility of EAT as an imaging biomarker for predicting and prognosticating cardiovascular disease is promising, with increased EAT thickness and volume being identified as independent predictors of major adverse cardiovascular events.

    REGISTRATION: URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42022338075.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  11. Ng CY, Hayati F, Nadarajan C
    BMJ Case Rep, 2020 Sep 09;13(9).
    PMID: 32912885 DOI: 10.1136/bcr-2020-235174
    Malignant melanoma is cancer of the skin which commonly metastasises to the stomach. There have been no reported cases of emphysematous gastritis secondary to metastasis of malignant melanomas, to date. However, a 61-year-old woman with metastatic malignant melanoma of the left great toe presented to us with symptoms of severe left hypochondrium pain associated with high-grade fever, gross abdominal distension and recurrent vomiting. Two months earlier, metastasis was observed to have spread to the stomach and inguinal lymph nodes. At this stage, the patient opted for traditional medication instead of definitive surgery and chemotherapy. Radiological imaging revealed an emphysematous change to the stomach which was radiologically consistent with gastric malignant melanoma. Unfortunately, the patient succumbed to this rare condition.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  12. Mahmood A, Needham K, Shakur-Still H, Harris T, Jamaluddin SF, Davies D, et al.
    Emerg Med J, 2021 Apr;38(4):270-278.
    PMID: 33262252 DOI: 10.1136/emermed-2020-210424
    BACKGROUND: Early tranexamic acid (TXA) treatment reduces head injury deaths after traumatic brain injury (TBI). We used brain scans that were acquired as part of the routine clinical practice during the CRASH-3 trial (before unblinding) to examine the mechanism of action of TXA in TBI. Specifically, we explored the potential effects of TXA on intracranial haemorrhage and infarction.

    METHODS: This is a prospective substudy nested within the CRASH-3 trial, a randomised placebo-controlled trial of TXA (loading dose 1 g over 10 min, then 1 g infusion over 8 hours) in patients with isolated head injury. CRASH-3 trial patients were recruited between July 2012 and January 2019. Participants in the current substudy were a subset of trial patients enrolled at 10 hospitals in the UK and 4 in Malaysia, who had at least one CT head scan performed as part of the routine clinical practice within 28 days of randomisation. The primary outcome was the volume of intraparenchymal haemorrhage (ie, contusion) measured on a CT scan done after randomisation. Secondary outcomes were progressive intracranial haemorrhage (post-randomisation CT shows >25% of volume seen on pre-randomisation CT), new intracranial haemorrhage (any haemorrhage seen on post-randomisation CT but not on pre-randomisation CT), cerebral infarction (any infarction seen on any type of brain scan done post-randomisation, excluding infarction seen pre-randomisation) and intracranial haemorrhage volume (intraparenchymal + intraventricular + subdural + epidural) in those who underwent neurosurgical haemorrhage evacuation. We planned to conduct sensitivity analyses excluding patients who were severely injured at baseline. Dichotomous outcomes were analysed using relative risks (RR) or hazard ratios (HR), and continuous outcomes using a linear mixed model.

    RESULTS: 1767 patients were included in this substudy. One-third of the patients had a baseline GCS (Glasgow Coma Score) of 3 (n=579) and 24% had unilateral or bilateral unreactive pupils. 46% of patients were scanned pre-randomisation and post-randomisation (n=812/1767), 19% were scanned only pre-randomisation (n=341/1767) and 35% were scanned only post-randomisation (n=614/1767). In all patients, there was no evidence that TXA prevents intraparenchymal haemorrhage expansion (estimate=1.09, 95% CI 0.81 to 1.45) or intracranial haemorrhage expansion in patients who underwent neurosurgical haemorrhage evacuation (n=363) (estimate=0.79, 95% CI 0.57 to 1.11). In patients scanned pre-randomisation and post-randomisation (n=812), there was no evidence that TXA reduces progressive haemorrhage (adjusted RR=0.91, 95% CI 0.74 to 1.13) and new haemorrhage (adjusted RR=0.85, 95% CI 0.72 to 1.01). When patients with unreactive pupils at baseline were excluded, there was evidence that TXA prevents new haemorrhage (adjusted RR=0.80, 95% CI 0.66 to 0.98). In patients scanned post-randomisation (n=1431), there was no evidence of an increase in infarction with TXA (adjusted HR=1.28, 95% CI 0.93 to 1.76). A larger proportion of patients without (vs with) a post-randomisation scan died from head injury (38% vs 19%: RR=1.97, 95% CI 1.66 to 2.34, p<0.0001).

    CONCLUSION: TXA may prevent new haemorrhage in patients with reactive pupils at baseline. This is consistent with the results of the CRASH-3 trial which found that TXA reduced head injury death in patients with at least one reactive pupil at baseline. However, the large number of patients without post-randomisation scans and the possibility that the availability of scan data depends on whether a patient received TXA, challenges the validity of inferences made using routinely collected scan data. This study highlights the limitations of using routinely collected scan data to examine the effects of TBI treatments.

    TRIAL REGISTRATION NUMBER: ISRCTN15088122.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  13. Sabarudin A, Md Yusof AK, Tay MF, Ng KH, Sun Z
    Radiat Prot Dosimetry, 2013;153(4):441-7.
    PMID: 22807493 DOI: 10.1093/rpd/ncs127
    This study was conducted to investigate the effectiveness of dose-saving protocols in dual-source computed tomography (CT) coronary angiography compared with invasive coronary angiography (ICA). On 50 patients who underwent coronary CT angiography was performed dual-source CT (DSCT) and compared with ICA procedures. Entrance skin dose (ESD), which was measured at the thyroid gland, and effective dose (E) were assessed for both imaging modalities. The mean ESD measured at the thyroid gland was the highest at 120 kVp, followed by the 100 kVp DSCT and the ICA protocols with 4.0±1.8, 2.7±1.0 and 1.1±1.2 mGy, respectively. The mean E was estimated to be 10.3±2.1, 6.2±2.3 and 5.3±3.4 mSv corresponding to the 120-kVp, 100-kVp DSCT and ICA protocols, respectively. The application of 100 kVp in DSCT coronary angiography is feasible only in patients with a low body mass index of <25 kg m(-2), which leads to a significant dose reduction with the radiation dose being equivalent to that of ICA.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  14. Chiu CK, Lee KJ, Chung WH, Chandren JR, Chan CYW, Kwan MK
    Spine (Phila Pa 1976), 2019 Jun 01;44(11):785-792.
    PMID: 30475346 DOI: 10.1097/BRS.0000000000002945
    STUDY DESIGN: Retrospective study of a prospectively-collected data.

    OBJECTIVE: To determine whether the severity of the curve magnitude in Lenke 1 and 2 Adolescent Idiopathic Scoliosis (AIS) patients affects the distance and position of the aorta from the vertebra.

    SUMMARY OF BACKGROUND DATA: There were studies that looked into the position of the aorta in scoliotic patients but none of them documented the change in distance of the aorta to the vertebra in relation to the magnitude of the scoliosis.

    METHODS: Patients with Lenke 1 and 2 AIS who underwent posterior spinal fusion using pedicle screw construct and had a preoperative computed tomography (CT) scan performed were recruited. The radiological parameters measured on preoperative CT scan were: Aortic-Vertebral Distance (AVD), Entry-Aortic Distance (EAD), Aortic-Vertebral angle (AVA), Pedicle Aorta angle/Aortic Alpha angle (α angle), and Aortic Beta angle (β angle).

    RESULTS: Thirty-nine patients were recruited. Significant moderate to strong positive correlation was found between AVD and Cobb angle from T8 to T12 vertebrae (r = 0.360 to 0.666). The EAD was generally small in the thoracic region (T4-T10) with mean EAD of less than 30 mm. Among all apical vertebrae, the mean AVD was 5.9 ± 2.2 mm with significant moderate-strong positive correlation to Cobb angle (r = 0.580). The mean α angle was 37.7 ± 8.7° with significant weak positive correlation with Cobb angle (r = 0.325).

    CONCLUSION: The larger the scoliotic curve, the aorta was located further away from the apical vertebral wall. The aorta has less risk of injury from the left lateral pedicle screw breach in larger scoliotic curve at the apical region. The distance from the pedicle screw entry point to the wall of the aorta was generally small (less than 30 mm) in the thoracic region (T4-T10).

    LEVEL OF EVIDENCE: 4.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  15. Nordin AJ, Rossetti C, Rahim NA
    Eur. J. Nucl. Med. Mol. Imaging, 2009 May;36(5):882.
    PMID: 19296106 DOI: 10.1007/s00259-009-1107-z
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  16. Saw A, Sengupta S
    Injury, 2001 Jun;32(5):430-2.
    PMID: 11382432
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  17. Siotia J, Gupta SK, Acharya SR, Saraswathi V
    Int J Comput Dent, 2011;14(4):321-34.
    PMID: 22324223
    Radiographic examination is essential in diagnosis and treatment planning in endodontics. Conventional radiographs depict structures in two dimensions only. The ability to assess the area of interest in three dimensions is advantageous. Computed tomography is an imaging technique which produces three-dimensional images of an object by taking a series of two-dimensional sectional X-ray images. DentaScan is a computed tomography software program that allows the mandible and maxilla to be imaged in three planes: axial, panoramic, and cross-sectional. As computed tomography is used in endodontics, DentaScan can play a wider role in endodontic diagnosis. It provides valuable information in the assessment of the morphology of the root canal, diagnosis of root fractures, internal and external resorptions, pre-operative assessment of anatomic structures etc. The aim of this article is to explore the clinical usefulness of computed tomography and DentaScan in endodontic diagnosis, through a series of four cases of different endodontic problems.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  18. Abdullah KA, McEntee MF, Reed W, Kench PL
    J Med Radiat Sci, 2018 Sep;65(3):175-183.
    PMID: 29707915 DOI: 10.1002/jmrs.279
    INTRODUCTION: An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost-effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom.

    METHODS: Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D-isosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D-printed phantom. The 3D-printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi-detector scanner at 120-kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real-patient and Catphan® 500 phantom.

    RESULTS: The output of the 3D-printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost-effective. HU values of the filling materials were comparable to the image datasets of real-patient and Catphan® 500 phantom.

    CONCLUSIONS: A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies.

    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  19. Tawfiq Zyoud TY, Abdul Rashid SN, Suppiah S, Abdul Rahim E, Mahmud R
    Med J Malaysia, 2020 07;75(4):411-418.
    PMID: 32724006
    INTRODUCTION: Autopsy is one of the most important approaches to identify clearly the exact cause of death, whether it was due to natural causes, sudden death, or traumatic. Various studies have been done in different countries regarding ways to improve the diagnosis during autopsy. The imaging approach is one of the methods that has been used to complement autopsy findings and to enhance the diagnosis for achieving the most accurate post-mortem diagnosis. The aim of this study is to identify the role of imaging modalities that complement routine autopsy and correlate the findings of diagnostic imaging that can help improve the accuracy of diagnosing the cause of death.

    METHODS: We sourced articles from Scopus, Ovid and PubMed databases for journal publications related to post-mortem diagnostic imaging. We highlight the most relevant full articles in English that explain the type of modality that was utilised and the added value it provided for diagnosing the cause of death.

    RESULTS: Minimally invasive autopsies assisted by imaging modalities added a great benefit to forensic medicine, and supported conventional autopsy. In particular the role of post mortem computed tomography (PMCT), post mortem computed tomography angiography (PMMR) and positron emission tomography computed tomography (PMCTA) that have incremental benefits in diagnosing traumatic death, fractures, tissue injuries, as well as the assessment of body height or weight for corpse identification.

    CONCLUSION: PMCT and PMMR, with particular emphasis on PMCTA, can provide higher accuracy than the other modalities. They can be regarded as indispensable methods that should be applied to the routine autopsy protocol, thus improving the findings and accuracy of diagnosing the cause of death.

    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  20. Al-Ameen Z, Sulong G
    Interdiscip Sci, 2015 Sep;7(3):319-25.
    PMID: 26199211 DOI: 10.1007/s12539-015-0022-1
    In computed tomography (CT), blurring occurs due to different hardware or software errors and hides certain medical details that are present in an image. Image blur is difficult to avoid in many circumstances and can frequently ruin an image. For this, many methods have been developed to reduce the blurring artifact from CT images. The problems with these methods are the high implementation time, noise amplification and boundary artifacts. Hence, this article presents an amended version of the iterative Landweber algorithm to attain artifact-free boundaries and less noise amplification in a faster application time. In this study, both synthetic and real blurred CT images are used to validate the proposed method properly. Similarly, the quality of the processed synthetic images is measured using the feature similarity index, structural similarity and visual information fidelity in pixel domain metrics. Finally, the results obtained from intensive experiments and performance evaluations show the efficiency of the proposed algorithm, which has potential as a new approach in medical image processing.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links