Displaying publications 61 - 80 of 116 in total

Abstract:
Sort:
  1. Alam F, Islam MA, Khalil MI, Gan SH
    Curr Pharm Des, 2016;22(20):3034-49.
    PMID: 26951104 DOI: 10.2174/1381612822666160307145801
    Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is characterized by insulin resistance in the hepatic and peripheral tissues. Glucose transporter 4 (GLUT4) plays a major role in the pathophysiology of T2DM. Its defective expression or translocation to the peripheral cell plasma membrane in T2DM patients hinders the entrance of glucose into the cell for energy production. In addition to suitable drugs, an appropriate diet and/or exercise can be implemented to target the increase in GLUT4 expression, GLUT4 concentrations and GLUT4 translocation to the cell surface when managing the glucose metabolism of T2DM patients. In this review, we discussed successful intervention strategies that were individually administered or coupled with diet and/or exercise and affected the expression and translocation of GLUT4 in T2DM while reducing the excess glucose load from the blood. Additionally, some potentially good synthetic and natural compounds, which can activate the insulin-independent GLUT4 signaling pathways for the efficient management of T2DM, are highlighted as possible targets or emerging alternative sources for future anti-diabetic drug development.
    Matched MeSH terms: Transcription Factors/metabolism*
  2. Liew LC, Gailhouste L, Tan GC, Yamamoto Y, Takeshita F, Nakagama H, et al.
    Stem Cells, 2020 04;38(4):504-515.
    PMID: 31828873 DOI: 10.1002/stem.3136
    The role of microRNAs (miRNAs) during mouse early development, especially in endoderm germ layer formation, is largely unknown. Here, via miRNA profiling during endoderm differentiation, we discovered that miR-124a negatively regulates endoderm lineage commitment in mouse embryonic stem cells (mESCs). To further investigate the functional role of miR-124a in early stages of differentiation, transfection of embryoid bodies with miR-124a mimic was performed. We showed that overexpression of miR-124a inhibits endoderm differentiation in vitro through targeting the 3'-untranslated region (UTR) of Sox17 and Gata6, revealing the existence of interplay between miR-124a and the Sox17/Gata6 transcription factors in hepato-specific gene regulation. In addition, we presented a feasible in vivo system that utilizes teratoma and gene expression profiling from microarray to quantitatively evaluate the functional role of miRNA in lineage specification. We demonstrated that ectopic expression of miR-124a in teratomas by intratumor delivery of miR-124a mimic and Atelocollagen, significantly suppressed endoderm and mesoderm lineage differentiation while augmenting the differentiation into ectoderm lineage. Collectively, our findings suggest that miR-124a plays a significant role in mESCs lineage commitment.
    Matched MeSH terms: SOXF Transcription Factors/metabolism*
  3. Khor YS, Wong PF
    Biogerontology, 2024 Feb;25(1):23-51.
    PMID: 37646881 DOI: 10.1007/s10522-023-10059-6
    FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
    Matched MeSH terms: Transcription Factors/metabolism
  4. Hasanpourghadi M, Pandurangan AK, Mustafa MR
    Pharmacol Res, 2018 02;128:376-388.
    PMID: 28923544 DOI: 10.1016/j.phrs.2017.09.009
    Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded to recognition of their molecular effects as anticancer drugs. Numerous natural products extracted from plants, fruits, mushrooms and mycelia, show potential inhibitory effects against several oncogenic transcription factors in breast cancer. Natural compounds that target oncogenic transcription factors have increased the number of candidate therapeutic agents. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in breast cancer.
    Matched MeSH terms: Transcription Factors/metabolism*
  5. Chew CH, Samian MR, Najimudin N, Tengku-Muhammad TS
    Biochem Biophys Res Commun, 2003 May 30;305(2):235-43.
    PMID: 12745064
    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcriptional factor that governs many biological processes, including lipid metabolism, inflammation, and atherosclerosis. We demonstrate here the existence of six variants and multiple transcriptional start sites of the 5(') untranslated region (UTR) of hPPARalpha gene, originating from the use of alternative splicing mechanisms and four different promoters. Three new novel exons at the 5(')-untranslated region of human PPARalpha gene were also identified and designated as Exon A, Exon B, and Exon 2b. In addition, 1.2kb promoter fragment which drives the transcription of 2 variants with Exon B (hPPARalpha4 and 6) was successfully cloned and characterised. Sequencing results revealed promoter B did not contain a conservative TATA box within the first 100 nucleotides from transcriptional start site but has several GC-rich regions and putative Sp1 sites. Using luciferase reporter constructs transfected into HepG2 and Hep3B cell lines, promoter B was shown to be functionally active. Basal transcriptional activity was significantly high in the promoter fragment -341/+34, but lower in the region -341/-1147 as compared to the fragment -341/+34, indicating the presence of an element conferring transcriptional activation between positions -341 and +34 or alternatively, the presence of transcriptional repression between positions -341 and -1147 in the promoter B of hPPARalpha.
    Matched MeSH terms: Transcription Factors/metabolism
  6. Khoo BY, Samian MR, Najimudin N, Tengku Muhammad TS
    PMID: 12524031
    The coding region of guinea pig peroxisome proliferator activated receptor gamma1 (gpPPARgamma1) cDNA was successfully cloned from adipose tissue by reverse transcription polymerase chain reaction (RT-PCR) using the designated primers based on the conserved regions of the other mammalian PPARgamma1 sequence. From RT-PCR, a combination of three cDNA fragments that comprised of the full length coding region PPARgamma1 cDNA gene were amplified, with the size of 498, 550 and 557 bp, respectively. All three fragments were then successfully assembled by utilising the internal restriction sites present at the overlapping regions to give rise to the full-length coding region of gpPPARgamma1 with the size of 1428 bp and consisting of 475 amino acids. Guinea pig PPARgamma1 is highly conserved with those of other species at protein and nucleotide levels. Gene expression studies showed that gpPPARgamma mRNA was predominantly expressed in adipose tissue followed by lung and spleen. However, at the protein level, PPARgamma was also found to be expressed in skeletal muscle.
    Matched MeSH terms: Transcription Factors/metabolism
  7. Pfister NT, Fomin V, Regunath K, Zhou JY, Zhou W, Silwal-Pandit L, et al.
    Genes Dev., 2015 Jun 15;29(12):1298-315.
    PMID: 26080815 DOI: 10.1101/gad.263202.115
    Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential.
    Matched MeSH terms: Transcription Factors/metabolism
  8. Jagadeeshan S, Prasad M, Badarni M, Ben-Lulu T, Liju VB, Mathukkada S, et al.
    Cancer Res, 2023 Apr 04;83(7):1031-1047.
    PMID: 36753744 DOI: 10.1158/0008-5472.CAN-22-2586
    The survival rate for patients with head and neck cancer (HNC) diagnosed with cervical lymph node (cLN) or distant metastasis is low. Genomic alterations in the HRAS oncogene are associated with advanced tumor stage and metastasis in HNC. Elucidation of the molecular mechanisms by which mutated HRAS (HRASmut) facilitates HNC metastasis could lead to improved treatment options for patients. Here, we examined metastasis driven by mutant HRAS in vitro and in vivo using HRASmut human HNC cell lines, patient-derived xenografts, and a novel HRASmut syngeneic model. Genetic and pharmacological manipulations indicated that HRASmut was sufficient to drive invasion in vitro and metastasis in vivo. Targeted proteomic analysis showed that HRASmut promoted AXL expression via suppressing the Hippo pathway and stabilizing YAP1 activity. Pharmacological blockade of HRAS signaling with the farnesyltransferase inhibitor tipifarnib activated the Hippo pathway and reduced the nuclear export of YAP1, thus suppressing YAP1-mediated AXL expression and metastasis. AXL was required for HRASmut cells to migrate and invade in vitro and to form regional cLN and lung metastases in vivo. In addition, AXL-depleted HRASmut tumors displayed reduced lymphatic and vascular angiogenesis in the primary tumor. Tipifarnib treatment also regulated AXL expression and attenuated VEGFA and VEGFC expression, thus regulating tumor-induced vascular formation and metastasis. Our results indicate that YAP1 and AXL are crucial factors for HRASmut-induced metastasis and that tipifarnib treatment can limit the metastasis of HNC tumors with HRAS mutations by enhancing YAP1 cytoplasmic sequestration and downregulating AXL expression.

    SIGNIFICANCE: Mutant HRAS drives metastasis of head and neck cancer by switching off the Hippo pathway to activate the YAP1-AXL axis and to stimulate lymphovascular angiogenesis.

    Matched MeSH terms: Transcription Factors/metabolism
  9. Das Gupta M, Chan SK, Monteiro A
    PLoS One, 2015;10(7):e0132882.
    PMID: 26173066 DOI: 10.1371/journal.pone.0132882
    Commonly used visible markers for transgenesis use fluorescent proteins expressed at the surface of the body, such as in eyes. One commonly used marker is the 3xP3-EGFP cassette containing synthetic binding sites for the eyeless/Pax6 conserved transcription factor. This marker cassette leads to fluorescent eyes in a variety of animals tested so far. Here we show that upon reaching adulthood, transgenic Bicyclus anynana butterflies containing this marker cassette exponentially loose fluorescence in their eyes. After 12 days, transgenic individuals are no longer distinguishable from wild type individuals. The decreased eye fluorescence is likely due to significantly decreased or halted eyeless/Pax6 expression observed in wild type animals upon adult emergence. Implications from these findings include care in screening transgenic animals before these reach adulthood, or shortly thereafter, and in using adult animals of the same age for quantitative screening of likely homozygote and heterozygote individuals.
    Matched MeSH terms: Paired Box Transcription Factors/metabolism*
  10. Nathan FM, Ogawa S, Parhar IS
    J Neurochem, 2015 Nov;135(4):814-29.
    PMID: 26250886 DOI: 10.1111/jnc.13273
    The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5-HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5-HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss-R1); using this primary antibody we found intense immunohistochemical labeling in the ventro-anterior corner of the MR (vaMR) but not in 5-HT neurons, suggesting the potential involvement of interneurons in 5-HT modulation by Kiss1. Double-fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5-HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5-HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons. The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5-HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5-HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5-HT system by the habenula-raphe pathway.
    Matched MeSH terms: Transcription Factors/metabolism
  11. Lau WK, Noruddin NAA, Ariffin AH, Mahmud MZ, Noor MHM, Amanah A, et al.
    BMC Complement Altern Med, 2019 Sep 05;19(1):243.
    PMID: 31488120 DOI: 10.1186/s12906-019-2640-3
    BACKGROUND: Brown adipocytes are known to promote energy expenditure and limit weight gain to combat obesity. Averrhoa bilimbi, locally called belimbing buluh (DBB), is mainly used as an ethnomedicine in the treatment of metabolic disorders including diabetes mellitus, hypertension and obesity. The present study aims to investigate the browning activity on white adipocytes by A. bilimbi leaf extract and to evaluate the potential mechanisms.

    METHODS: Ethanolic leaf extract of A. bilimbi was exposed to Myf5 lineage precursor cells to stimulate adipocyte differentiation. Protein expressions of brown adipocyte markers were determined through high content screening analysis and validated through western blotting. Mito Stress Test assay was conducted to evaluate the cellular oxygen consumption rate upon A. bilimbi treatment.

    RESULTS: A. bilimbi ethanolic leaf extract exhibited an adipogenesis effect similar to a PPARgamma agonist. It also demonstrated brown adipocyte differentiation in myoblastic Myf5-positive precursor cells. Expression of UCP1 and PRDM16 were induced. The basal metabolic rate and respiratory capacity of mitochondria were increased upon A. bilimbi treatment.

    CONCLUSIONS: The findings suggest that Averrhoa bilimbi ethanolic leaf extract induces adipocyte browning through PRDM16 activation and enhances mitochondria activity due to UCP1 up-regulation.

    Matched MeSH terms: Transcription Factors/metabolism
  12. Ravanfar SA, Aziz MA, Saud HM, Abdullah JO
    Curr Genet, 2015 Nov;61(4):653-63.
    PMID: 25986972 DOI: 10.1007/s00294-015-0494-x
    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.
    Matched MeSH terms: Transcription Factors/metabolism
  13. Hussain RMF, Kim HK, Khurshid M, Akhtar MT, Linthorst HJM
    Metabolomics, 2018 01 31;14(3):25.
    PMID: 30830336 DOI: 10.1007/s11306-018-1317-0
    INTRODUCTION: WRKY proteins belong to a plant-specific class of transcription factors. Seventy-four WKRY genes have been identified in Arabidopsis and many WRKY proteins are known to be involved in responses to stress, especially to biotic stress. They may act either as transcriptional activators or as repressors of genes that play roles in the stress response. A number of studies have proposed the connection of Arabidopsis WRKY transcription factors in induced pathogenesis-related (PR) gene expression, although no direct evidence has been presented for specific WRKY-PR promoter interactions.

    OBJECTIVE: We previously identified AtWRKY50 as a transcriptional activator of SAR gene PR1. Although PR1 accumulates to high levels in plants after attack by pathogens, its function is still elusive. Here we investigated the effects of overexpression of several WRKY proteins, including AtWRKY50, on the metabolome of Arabidopsis thaliana.

    METHODS: The influence of overexpression of WRKY proteins on the metabolites of Arabidopsis was investigated by using an NMR spectroscopy-based metabolomic approach. The 1H NMR data was analysed using the multivariate data analysis methods, such as principal component analysis, hierarchical cluster analysis and partial least square-discriminant analysis.

    RESULTS: The results showed that the metabolome of transgenic Arabidopsis seedlings overexpressing AtWRKY50 was different from wild type Arabidopsis and transgenic Arabidopsis overexpressing other WRKY genes. Amongst other metabolites, sinapic acid and 1-O-sinapoyl-β-D-glucose especially appeared to be the most prominent discriminating metabolites, accumulating to levels 2 to 3 times higher in the AtWRKY50 overexpressor lines.

    CONCLUSION: Our results indicate a possible involvement of AtWRKY50 in secondary metabolite production in Arabidopsis, in particular of hydroxycinnamates such as sinapic acid and 1-O-sinapoyl-β-D-glucose.

    Matched MeSH terms: Transcription Factors/metabolism*
  14. Ma XR, Edmund Sim UH, Pauline B, Patricia L, Rahman J
    Trop Biomed, 2008 Apr;25(1):46-57.
    PMID: 18600204 MyJurnal
    Colorectal carcinoma (CRC) arises as a result of mutational activation of oncogenes coupled with inactivation of tumour suppressor genes. Mutations in APC, K-ras and p53 have been commonly reported. In a previous study by our group, the tumour susceptibility gene 101 (TSG101) were found to be persistently upregulated in CRC cases. TSG101 was reported to be closely related to cancers of the breast, brain and colon, and its overexpression in human papillary thyroid carcinomas and ovarian carcinomas had previously been reported. The wingless-type MMTV integration site family member 2 (WNT2) is potentially important in the Wnt/beta-catenin pathway and upregulation of WNT2 is not uncommon in human cancers. In this study, we report the investigation for mutation(s) and expression pattern(s) of WNT2 and TSG101, in an effort to further understand their role(s) in CRC tumourigenesis. Our results revealed no mutation in these genes, despite their persistent upregulation in CRC cases studied.
    Matched MeSH terms: Transcription Factors/metabolism
  15. Yip WK, Leong VC, Abdullah MA, Yusoff S, Seow HF
    Oncol Rep, 2008 Feb;19(2):319-28.
    PMID: 18202777
    The Akt pathway is one of the most common molecular alterations in various human malignancies. However, its involvement in nasopharyngeal carcinoma (NPC) tumorigenesis has not been well established. In this study, the status of Akt activation and expression of its upstream and downstream molecules was investigated in 64 NPC and 38 non-malignant nasopharyngeal tissues by immunohistochemistry. The hotspot mutations of PIK3CA, encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K), were also determined in 25 of these NPC tissues. No hotspot mutations were found in any of the samples tested. Akt was activated in 27 (42.2%) and 23 (35.9%) NPCs, as indicated by p-Akt (Thr308) and p-Akt (Ser473) immunoreactivity, respectively. PTEN loss did not correlate statistically with activated Akt. However, a positive correlation was observed between activated Akt and phospho-epidermal growth factor receptor (p-EGFR), suggesting that the EGFR signaling might be one of the upstream regulators of the Akt pathway. The phosphorylation of forkhead (FKHR) and Bcl-2 associated death domain (BAD), but not mammalian target of rapamycin and glycogen synthase kinase-3beta, was significantly correlated with Akt activation. This implies that Akt promotes cell proliferation (as estimated by Ki-67) and survival, at least, through the inactivation of FKHR and BAD in NPC. Our data revealed that the EGFR/PI3K/Akt signaling pathway is important in NPC pathogenesis and that PIK3CA hotspot mutations are rare in NPC.
    Matched MeSH terms: Forkhead Transcription Factors/metabolism*
  16. Zaborowska J, Isa NF, Murphy S
    Bioessays, 2016 07;38 Suppl 1:S75-85.
    PMID: 27417125 DOI: 10.1002/bies.201670912
    Positive transcription elongation factor b (P-TEFb), which comprises cyclin-dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P-TEFb is required for productive elongation of transcription of protein-coding genes by RNA polymerase II (pol II). In addition, P-TEFb-mediated phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P-TEFb could be effective anti-viral agents.
    Matched MeSH terms: Transcription Factors/metabolism
  17. Daneshvar N, Abdullah R, Shamsabadi FT, How CW, Mh MA, Mehrbod P
    Cell Biol Int, 2013 May;37(5):415-9.
    PMID: 23504853 DOI: 10.1002/cbin.10051
    Nanotechnology has provided new technological opportunities, which could help in challenges confronting stem cell research. Polyamidoamine (PAMAM) dendrimers, a new class of macromolecular polymers with high molecular uniformity, narrow molecular distribution specific size and shape and highly functionalised terminal surface have been extensively explored for biomedical application. PAMAM dendrimers are also nanospherical, hyperbranched and monodispersive molecules exhibiting exclusive properties which make them potential carriers for drug and gene delivery.
    Matched MeSH terms: Transcription Factors/metabolism
  18. Poli A, Abdul-Hamid S, Zaurito AE, Campagnoli F, Bevilacqua V, Sheth B, et al.
    Proc Natl Acad Sci U S A, 2021 08 03;118(31).
    PMID: 34312224 DOI: 10.1073/pnas.2010053118
    Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P 2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.
    Matched MeSH terms: Forkhead Transcription Factors/metabolism*
  19. Hor SY, Lee SC, Wong CI, Lim YW, Lim RC, Wang LZ, et al.
    Pharmacogenomics J, 2008 Apr;8(2):139-46.
    PMID: 17876342
    Previously studied candidate genes have failed to account for inter-individual variability of docetaxel and doxorubicin disposition and effects. We genotyped the transcriptional regulators of CYP3A and ABCB1 in 101 breast cancer patients from 3 Asian ethnic groups, that is, Chinese, Malays and Indians, in correlation with the pharmacokinetics and pharmacodynamics of docetaxel and doxorubicin. While there was no ethnic difference in docetaxel and doxorubicin pharmacokinetics, ethnic difference in docetaxel- (ANOVA, P=0.001) and doxorubicin-induced (ANOVA, P=0.003) leukocyte suppression was observed, with Chinese and Indians experiencing greater degree of docetaxel-induced myelosuppression than Malays (Bonferroni, P=0.002, P=0.042), and Chinese experiencing greater degree of doxorubicin-induced myelosuppression than Malays and Indians (post hoc Bonferroni, P=0.024 and 0.025). Genotyping revealed both PXR and CAR to be well conserved; only a PXR 5'-untranslated region polymorphism (-24381A>C) and a silent CAR variant (Pro180Pro) were found at allele frequencies of 26 and 53%, respectively. Two non-synonymous variants were identified in HNF4alpha (Met49Val and Thr130Ile) at allele frequencies of 55 and 1%, respectively, with the Met49Val variant associated with slower neutrophil recovery in docetaxel-treated patients (ANOVA, P=0.046). Interactions were observed between HNF4alpha Met49Val and CAR Pro180Pro, with patients who were wild type for both variants experiencing least docetaxel-induced neutropenia (ANOVA, P=0.030). No other significant genotypic associations with pharmacokinetics or pharmacodynamics of either drug were found. The PXR-24381A>C variants were significantly more common in Indians compared to Chinese or Malays (32/18/21%, P=0.035) Inter-individual and inter-ethnic variations of docetaxel and doxorubicin pharmacokinetics or pharmacodynamics exist, but genotypic variability of the transcriptional regulators PAR, CAR and HNF4alpha cannot account for this variability.
    Matched MeSH terms: Transcription Factors/metabolism
  20. Teoh PH, Shu-Chien AC, Chan WK
    Dev. Dyn., 2010 Mar;239(3):865-74.
    PMID: 20108353 DOI: 10.1002/dvdy.22221
    pbx1, a TALE (three-amino acid loop extension) homeodomain transcription factor, is involved in a diverse range of developmental processes. We examined the expression of pbx1 during zebrafish development by in situ hybridization. pbx1 transcripts could be detected in the central nervous system and pharyngeal arches from 24 hpf onwards. In the swim bladder anlage, pbx1 was detected as early as 28 hpf, making it the earliest known marker for this organ. Morpholino-mediated gene knockdown of pbx1 revealed that the swim bladder failed to inflate, with eventual lethality occurring by 8 dpf. The knockdown of pbx1 did not perturb the expression of prdc and foxA3, with both early swim bladder markers appearing normally at 36 and 48 hpf, respectively. However, the expression of anxa5 was completely abolished by pbx1 knockdown at 60 hpf suggesting that pbx1 may be required during the late stage of swim bladder development.
    Matched MeSH terms: Transcription Factors/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links