DESIGN: A comprehensive literature review was completed. For this the electronic library databases ASFA, CABD and Scopus were systematically searched and relevant references cited in these sources were carefully analysed. The search terms used were 'fish', 'small fish species', 'micronutrients', 'food-based strategies', 'fish consumption' and 'developing countries'. The quality of data on nutritional analyses was carefully reviewed and data that lacked proper information on methods, units and samples were excluded.
RESULTS: The evidence collected confirmed the high levels of vitamin A, Fe and Zn in some of the small fish species in developing countries. These small fish are reported to be more affordable and accessible than the larger fish and other usual animal-source foods and vegetables. Evidence suggests that these locally available small fish have considerable potential as cost-effective food-based strategies to enhance micronutrient intakes or as a complementary food for undernourished children. However, the present review shows that only a few studies have been able to rigorously assess the impact of fish consumption on improved nutritional status in developing countries.
CONCLUSIONS: Further research is required in areas such as determination of fish consumption patterns of poor households, the nutritional value of local fish and other aquatic animals and the impact of fish intake on improved nutritional status in developing countries where undernutrition is a major public health problem.
OBJECTIVE: This study evaluated the associations of plasma carotenoid, retinol, tocopherol, and vitamin C concentrations and risk of breast cancer.
DESIGN: In a nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort, 1502 female incident breast cancer cases were included, with an oversampling of premenopausal (n = 582) and estrogen receptor-negative (ER-) cases (n = 462). Controls (n = 1502) were individually matched to cases by using incidence density sampling. Prediagnostic samples were analyzed for α-carotene, β-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, retinol, α-tocopherol, γ-tocopherol, and vitamin C. Breast cancer risk was computed according to hormone receptor status and age at diagnosis (proxy for menopausal status) by using conditional logistic regression and was further stratified by smoking status, alcohol consumption, and body mass index (BMI). All statistical tests were 2-sided.
RESULTS: In quintile 5 compared with quintile 1, α-carotene (OR: 0.61; 95% CI: 0.39, 0.98) and β-carotene (OR: 0.41; 95% CI: 0.26, 0.65) were inversely associated with risk of ER- breast tumors. The other analytes were not statistically associated with ER- breast cancer. For estrogen receptor-positive (ER+) tumors, no statistically significant associations were found. The test for heterogeneity between ER- and ER+ tumors was statistically significant only for β-carotene (P-heterogeneity = 0.03). A higher risk of breast cancer was found for retinol in relation to ER-/progesterone receptor-negative tumors (OR: 2.37; 95% CI: 1.20, 4.67; P-heterogeneity with ER+/progesterone receptor positive = 0.06). We observed no statistically significant interaction between smoking, alcohol, or BMI and all investigated plasma analytes (based on tertile distribution).
CONCLUSION: Our results indicate that higher concentrations of plasma β-carotene and α-carotene are associated with lower breast cancer risk of ER- tumors.
MATERIALS AND METHODS: This study included a total of 240 matched cases and controls where subjects were selected from the Malaysian Oral Cancer Database and Tissue Bank System (MOCDTBS). Retinol, α-tocopherol and β-carotene levels and intake were examined by high-performance liquid chromatography (HPLC) and food frequency questionnaire (FFQ) respectively.
RESULTS: It was found that results from the two methods applied did not correlate, so that further analysis was done using the HPLC method utilising blood serum. Serum levels of retinol and α-tocopherol among cases (0.177±0.081, 1.649±1.670μg/ml) were significantly lower than in controls (0.264±0.137, 3.225±2.054μg/ml) (p<0.005). Although serum level of β-carotene among cases (0.106±0.159 μg/ml) were lower compared to controls (0.134±0.131μg/ml), statistical significance was not observed. Logistic regression analysis showed that high serum level of retinol (OR=0.501, 95% CI=0.254-0.992, p<0.05) and α-tocopherol (OR=0.184, 95% CI=0.091-0.370, p<0.05) was significantly related to lower risk of oral cancer, whereas no relationship was observed between β-carotene and oral cancer risk.
CONCLUSIONS: High serum levels of retinol and α-tocopherol confer protection against oral cancer risk.