Displaying publications 61 - 80 of 282 in total

Abstract:
Sort:
  1. Chong JWR, Tang DYY, Leong HY, Khoo KS, Show PL, Chew KW
    Bioengineered, 2023 Dec;14(1):2244232.
    PMID: 37578162 DOI: 10.1080/21655979.2023.2244232
    Fucoxanthin is a carotenoid that possesses various beneficial medicinal properties for human well-being. However, the current extraction technologies and quantification techniques are still lacking in terms of cost validation, high energy consumption, long extraction time, and low yield production. To date, artificial intelligence (AI) models can assist and improvise the bottleneck of fucoxanthin extraction and quantification process by establishing new technologies and processes which involve big data, digitalization, and automation for efficiency fucoxanthin production. This review highlights the application of AI models such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS), capable of learning patterns and relationships from large datasets, capturing non-linearity, and predicting optimal conditions that significantly impact the fucoxanthin extraction yield. On top of that, combining metaheuristic algorithm such as genetic algorithm (GA) can further improve the parameter space and discovery of optimal conditions of ANN and ANFIS models, which results in high R2 accuracy ranging from 98.28% to 99.60% after optimization. Besides, AI models such as support vector machine (SVM), convolutional neural networks (CNNs), and ANN have been leveraged for the quantification of fucoxanthin, either computer vision based on color space of images or regression analysis based on statistical data. The findings are reliable when modeling for the concentration of pigments with high R2 accuracy ranging from 66.0% - 99.2%. This review paper has reviewed the feasibility and potential of AI for the extraction and quantification purposes, which can reduce the cost, accelerate the fucoxanthin yields, and development of fucoxanthin-based products.
    Matched MeSH terms: Artificial Intelligence*
  2. Tehrany PM, Zabihi MR, Ghorbani Vajargah P, Tamimi P, Ghaderi A, Norouzkhani N, et al.
    Int Wound J, 2023 Nov;20(9):3768-3775.
    PMID: 37312659 DOI: 10.1111/iwj.14275
    Pressure injury (PI), or local damage to soft tissues and skin caused by prolonged pressure, remains controversial in the medical world. Patients in intensive care units (ICUs) were frequently reported to suffer PIs, with a heavy burden on their life and expenditures. Machine learning (ML) is a Section of artificial intelligence (AI) that has emerged in nursing practice and is increasingly used for diagnosis, complications, prognosis, and recurrence prediction. This study aims to investigate hospital-acquired PI (HAPI) risk predictions in ICU based on a ML algorithm by R programming language analysis. The former evidence was gathered through PRISMA guidelines. The logical analysis was applied via an R programming language. ML algorithms based on usage rate included logistic regression (LR), Random Forest (RF), Distributed tree (DT), Artificial neural networks (ANN), SVM (Support Vector Machine), Batch normalisation (BN), GB (Gradient Boosting), expectation-maximisation (EM), Adaptive Boosting (AdaBoost), and Extreme Gradient Boosting (XGBoost). Six cases were related to risk predictions of HAPI in the ICU based on an ML algorithm from seven obtained studies, and one study was associated with the Detection of PI risk. Also, the most estimated risksSerum Albumin, Lack of Activity, mechanical ventilation (MV), partial pressure of oxygen (PaO2), Surgery, Cardiovascular adequacy, ICU stay, Vasopressor, Consciousness, Skin integrity, Recovery Unit, insulin and oral antidiabetic (INS&OAD), Complete blood count (CBC), acute physiology and chronic health evaluation (APACHE) II score, Spontaneous bacterial peritonitis (SBP), Steroid, Demineralized Bone Matrix (DBM), Braden score, Faecal incontinence, Serum Creatinine (SCr) and age. In sum, HAPI prediction and PI risk detection are two significant areas for using ML in PI analysis. Also, the current data showed that the ML algorithm, including LR and RF, could be regarded as the practical platform for developing AI tools for diagnosing, prognosis, and treating PI in hospital units, especially ICU.
    Matched MeSH terms: Artificial Intelligence*
  3. Liu X, Soh KG, Dev Omar Dev R, Li W, Yi Q
    PLoS One, 2023;18(11):e0293313.
    PMID: 37917594 DOI: 10.1371/journal.pone.0293313
    Since various dance teaching systems have attracted much attention with the development of Artificial Intelligence (AI) technology, this paper improves the recognition performance of Latin dance teaching systems by optimizing the action recognition model. Firstly, the object detection and action recognition technology under the current AI technology is analyzed, and the Two-stage object detection algorithm and One-stage object detection algorithm are evaluated. Secondly, the technologies and functions contained in the adolescent health Latin dance teaching system are described, including image acquisition, feature extraction, object detection, and action recognition. Finally, the action recognition algorithm is optimized based on object detection, and the rationality and feasibility of the proposed algorithm are verified by experiments. The experimental results show that the optimization algorithm can search the optimal feature subset after five iterations on Undefine Classes of 101 (UCF101) dataset, but it needs seven iterations on Human Motion Database 51 (HMDB51) dataset. Meanwhile, when using support vector machine classifier, the optimization algorithm can achieve the highest accuracy of motion recognition. Regressive Function, Multinomial Naive Bayes and Gaussian Naive Bayes Algorithms have lower prediction delay, as low as 0.01s. Therefore, this paper has certain reference significance for the design and implementation of adolescent health Latin dance teaching system.
    Matched MeSH terms: Artificial Intelligence*
  4. Md Shah MN, Azman RR, Chan WY, Ng KH
    Can Assoc Radiol J, 2024 Feb;75(1):92-97.
    PMID: 37075322 DOI: 10.1177/08465371231171700
    The past two decades have seen a significant increase in the use of CT, with a corresponding rise in the mean population radiation dose. This rise in CT use has caused improved diagnostic certainty in conditions that were not previously routinely evaluated using CT, such as headaches, back pain, and chest pain. Unused data, unrelated to the primary diagnosis, embedded within these scans have the potential to provide organ-specific measurements that can be used to prognosticate or risk-profile patients for a wide variety of conditions. The recent increased availability of computing power, expertise and software for automated segmentation and measurements, assisted by artificial intelligence, provides a conducive environment for the deployment of these analyses into routine use. Data gathering from CT has the potential to add value to examinations and help offset the public perception of harm from radiation exposure. We review the potential for the collection of these data and propose the incorporation of this strategy into routine clinical practice.
    Matched MeSH terms: Artificial Intelligence*
  5. Lim AS, Ling YL, Wilby KJ, Mak V
    Curr Pharm Teach Learn, 2024 Mar;16(3):212-220.
    PMID: 38171979 DOI: 10.1016/j.cptl.2023.12.028
    BACKGROUND: Objective structured clinical examinations (OSCEs) remain an integral part of pharmacy education. This study aimed to characterize key researchers, areas, and themes in pharmacy education OSCEs using a bibliometric review with content analysis.

    METHODS: A bibliometric review was conducted on literature from over 23 years from January 2000 to May 2023. Articles focusing on any type of OSCE research in pharmacy education in both undergraduate and postgraduate sectors were included. Articles were excluded if they were not original articles or not published in English. A summative content analysis was also conducted to identify key topics.

    RESULTS: A total of 192 articles were included in the analysis. There were 242 institutions that contributed to the OSCE literature in pharmacy education, with the leading country being Canada. Most OSCE research came from developed countries and were descriptive studies based on single institution data. The top themes emerging from content analysis were student perceptions on OSCE station styles (n = 98), staff perception (n = 19), grade assessment of OSCEs (n = 145), interprofessional education (n = 11), standardized patients (n = 12), and rubric development and standard setting (n = 8).

    IMPLICATIONS: There has been a growth in virtual OSCEs, interprofessional OSCEs, and artificial intelligence OSCEs. Communication rubrics and minimizing assessor variability are still trending research areas. There is scope to conduct more research on evaluating specific types of OSCEs, when best to hold an OSCE, and comparing OSCEs to other assessments.

    Matched MeSH terms: Artificial Intelligence*
  6. Kang CC, Lee TY, Lim WF, Yeo WWY
    Clin Transl Sci, 2023 Nov;16(11):2078-2094.
    PMID: 37702288 DOI: 10.1111/cts.13640
    Moving away from traditional "one-size-fits-all" treatment to precision-based medicine has tremendously improved disease prognosis, accuracy of diagnosis, disease progression prediction, and targeted-treatment. The current cutting-edge of 5G network technology is enabling a growing trend in precision medicine to extend its utility and value to the smart healthcare system. The 5G network technology will bring together big data, artificial intelligence, and machine learning to provide essential levels of connectivity to enable a new health ecosystem toward precision medicine. In the 5G-enabled health ecosystem, its applications involve predictive and preventative measurements which enable advances in patient personalization. This review aims to discuss the opportunities, challenges, and prospects posed to 5G network technology in moving forward to deliver personalized treatments and patient-centric care via a precision medicine approach.
    Matched MeSH terms: Artificial Intelligence*
  7. Vineth Ligi S, Kundu SS, Kumar R, Narayanamoorthi R, Lai KW, Dhanalakshmi S
    J Healthc Eng, 2022;2022:5998042.
    PMID: 35251572 DOI: 10.1155/2022/5998042
    Pulmonary medical image analysis using image processing and deep learning approaches has made remarkable achievements in the diagnosis, prognosis, and severity check of lung diseases. The epidemic of COVID-19 brought out by the novel coronavirus has triggered a critical need for artificial intelligence assistance in diagnosing and controlling the disease to reduce its effects on people and global economies. This study aimed at identifying the various COVID-19 medical imaging analysis models proposed by different researchers and featured their merits and demerits. It gives a detailed discussion on the existing COVID-19 detection methodologies (diagnosis, prognosis, and severity/risk detection) and the challenges encountered for the same. It also highlights the various preprocessing and post-processing methods involved to enhance the detection mechanism. This work also tries to bring out the different unexplored research areas that are available for medical image analysis and how the vast research done for COVID-19 can advance the field. Despite deep learning methods presenting high levels of efficiency, some limitations have been briefly described in the study. Hence, this review can help understand the utilization and pros and cons of deep learning in analyzing medical images.
    Matched MeSH terms: Artificial Intelligence*
  8. Khosla A, Sonu, Awan HTA, Singh K, Gaurav, Walvekar R, et al.
    Adv Sci (Weinh), 2022 Dec;9(36):e2203527.
    PMID: 36316226 DOI: 10.1002/advs.202203527
    The continuous deterioration of the environment due to extensive industrialization and urbanization has raised the requirement to devise high-performance environmental remediation technologies. Membrane technologies, primarily based on conventional polymers, are the most commercialized air, water, solid, and radiation-based environmental remediation strategies. Low stability at high temperatures, swelling in organic contaminants, and poor selectivity are the fundamental issues associated with polymeric membranes restricting their scalable viability. Polymer-metal-carbides and nitrides (MXenes) hybrid membranes possess remarkable physicochemical attributes, including strong mechanical endurance, high mechanical flexibility, superior adsorptive behavior, and selective permeability, due to multi-interactions between polymers and MXene's surface functionalities. This review articulates the state-of-the-art MXene-polymer hybrid membranes, emphasizing its fabrication routes, enhanced physicochemical properties, and improved adsorptive behavior. It comprehensively summarizes the utilization of MXene-polymer hybrid membranes for environmental remediation applications, including water purification, desalination, ion-separation, gas separation and detection, containment adsorption, and electromagnetic and nuclear radiation shielding. Furthermore, the review highlights the associated bottlenecks of MXene-Polymer hybrid-membranes and its possible alternate solutions to meet industrial requirements. Discussed are opportunities and prospects related to MXene-polymer membrane to devise intelligent and next-generation environmental remediation strategies with the integration of modern age technologies of internet-of-things, artificial intelligence, machine-learning, 5G-communication and cloud-computing are elucidated.
    Matched MeSH terms: Artificial Intelligence*
  9. Yau KL, Poh GS, Chien SF, Al-Rawi HA
    ScientificWorldJournal, 2014;2014:209810.
    PMID: 24995352 DOI: 10.1155/2014/209810
    Cognitive radio (CR) enables unlicensed users to exploit the underutilized spectrum in licensed spectrum whilst minimizing interference to licensed users. Reinforcement learning (RL), which is an artificial intelligence approach, has been applied to enable each unlicensed user to observe and carry out optimal actions for performance enhancement in a wide range of schemes in CR, such as dynamic channel selection and channel sensing. This paper presents new discussions of RL in the context of CR networks. It provides an extensive review on how most schemes have been approached using the traditional and enhanced RL algorithms through state, action, and reward representations. Examples of the enhancements on RL, which do not appear in the traditional RL approach, are rules and cooperative learning. This paper also reviews performance enhancements brought about by the RL algorithms and open issues. This paper aims to establish a foundation in order to spark new research interests in this area. Our discussion has been presented in a tutorial manner so that it is comprehensive to readers outside the specialty of RL and CR.
    Matched MeSH terms: Artificial Intelligence*
  10. Kiong TS, Salem SB, Paw JK, Sankar KP, Darzi S
    ScientificWorldJournal, 2014;2014:164053.
    PMID: 25003136 DOI: 10.1155/2014/164053
    In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals.
    Matched MeSH terms: Artificial Intelligence*
  11. Abidi SS, Cheah YN, Curran J
    IEEE Trans Inf Technol Biomed, 2005 Jun;9(2):193-204.
    PMID: 16138536
    Tacit knowledge of health-care experts is an important source of experiential know-how, yet due to various operational and technical reasons, such health-care knowledge is not entirely harnessed and put into professional practice. Emerging knowledge-management (KM) solutions suggest strategies to acquire the seemingly intractable and nonarticulated tacit knowledge of health-care experts. This paper presents a KM methodology, together with its computational implementation, to 1) acquire the tacit knowledge possessed by health-care experts; 2) represent the acquired tacit health-care knowledge in a computational formalism--i.e., clinical scenarios--that allows the reuse of stored knowledge to acquire tacit knowledge; and 3) crystallize the acquired tacit knowledge so that it is validated for health-care decision-support and medical education systems.
    Matched MeSH terms: Artificial Intelligence*
  12. Lim WL, Wibowo A, Desa MI, Haron H
    Comput Intell Neurosci, 2016;2016:5803893.
    PMID: 26819585 DOI: 10.1155/2016/5803893
    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.
    Matched MeSH terms: Artificial Intelligence*
  13. Saybani MR, Shamshirband S, Golzari S, Wah TY, Saeed A, Mat Kiah ML, et al.
    Med Biol Eng Comput, 2016 Mar;54(2-3):385-99.
    PMID: 26081904 DOI: 10.1007/s11517-015-1323-6
    Tuberculosis is a major global health problem that has been ranked as the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus. Diagnosis based on cultured specimens is the reference standard; however, results take weeks to obtain. Slow and insensitive diagnostic methods hampered the global control of tuberculosis, and scientists are looking for early detection strategies, which remain the foundation of tuberculosis control. Consequently, there is a need to develop an expert system that helps medical professionals to accurately diagnose the disease. The objective of this study is to diagnose tuberculosis using a machine learning method. Artificial immune recognition system (AIRS) has been used successfully for diagnosing various diseases. However, little effort has been undertaken to improve its classification accuracy. In order to increase the classification accuracy, this study introduces a new hybrid system that incorporates real tournament selection mechanism into the AIRS. This mechanism is used to control the population size of the model and to overcome the existing selection pressure. Patient epacris reports obtained from the Pasteur laboratory in northern Iran were used as the benchmark data set. The sample consisted of 175 records, from which 114 (65 %) were positive for TB, and the remaining 61 (35 %) were negative. The classification performance was measured through tenfold cross-validation, root-mean-square error, sensitivity, and specificity. With an accuracy of 100 %, RMSE of 0, sensitivity of 100 %, and specificity of 100 %, the proposed method was able to successfully classify tuberculosis cases. In addition, the proposed method is comparable with top classifiers used in this research.
    Matched MeSH terms: Artificial Intelligence*
  14. Cheah YN, Abidi SS
    PMID: 11187672
    The abundance and transient nature to healthcare knowledge has rendered it difficult to acquire with traditional knowledge acquisition methods. In this paper, we propose a Knowledge Management approach, through the use of scenarios, as a mean to acquire and represent tacit healthcare knowledge. This proposition is based on the premise that tacit knowledge is best manifested in atypical situations. We also provide an overview of the representational scheme and novel acquisition mechanism of scenarios.
    Matched MeSH terms: Artificial Intelligence*
  15. Campero-Jurado I, Márquez-Sánchez S, Quintanar-Gómez J, Rodríguez S, Corchado JM
    Sensors (Basel), 2020 Nov 01;20(21).
    PMID: 33139608 DOI: 10.3390/s20216241
    Information and communication technologies (ICTs) have contributed to advances in Occupational Health and Safety, improving the security of workers. The use of Personal Protective Equipment (PPE) based on ICTs reduces the risk of accidents in the workplace, thanks to the capacity of the equipment to make decisions on the basis of environmental factors. Paradigms such as the Industrial Internet of Things (IIoT) and Artificial Intelligence (AI) make it possible to generate PPE models feasibly and create devices with more advanced characteristics such as monitoring, sensing the environment and risk detection between others. The working environment is monitored continuously by these models and they notify the employees and their supervisors of any anomalies and threats. This paper presents a smart helmet prototype that monitors the conditions in the workers' environment and performs a near real-time evaluation of risks. The data collected by sensors is sent to an AI-driven platform for analysis. The training dataset consisted of 11,755 samples and 12 different scenarios. As part of this research, a comparative study of the state-of-the-art models of supervised learning is carried out. Moreover, the use of a Deep Convolutional Neural Network (ConvNet/CNN) is proposed for the detection of possible occupational risks. The data are processed to make them suitable for the CNN and the results are compared against a Static Neural Network (NN), Naive Bayes Classifier (NB) and Support Vector Machine (SVM), where the CNN had an accuracy of 92.05% in cross-validation.
    Matched MeSH terms: Artificial Intelligence*
  16. Hasnul MA, Aziz NAA, Alelyani S, Mohana M, Aziz AA
    Sensors (Basel), 2021 Jul 23;21(15).
    PMID: 34372252 DOI: 10.3390/s21155015
    Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare.
    Matched MeSH terms: Artificial Intelligence*
  17. Boon IS, Lim JS, Yap MH, Au Yong TPT, Boon CS
    J Med Imaging Radiat Sci, 2020 12;51(4S):S114-S115.
    PMID: 32859543 DOI: 10.1016/j.jmir.2020.08.011
    Matched MeSH terms: Artificial Intelligence*
  18. Ke B, Nguyen H, Bui XN, Bui HB, Choi Y, Zhou J, et al.
    Chemosphere, 2021 Aug;276:130204.
    PMID: 34088091 DOI: 10.1016/j.chemosphere.2021.130204
    Heavy metals in water and wastewater are taken into account as one of the most hazardous environmental issues that significantly impact human health. The use of biochar systems with different materials helped significantly remove heavy metals in the water, especially wastewater treatment systems. Nevertheless, heavy metal's sorption efficiency on the biochar systems is highly dependent on the biochar characteristics, metal sources, and environmental conditions. Therefore, this study implicates the feasibility of biochar systems in the heavy metal sorption in water/wastewater and the use of artificial intelligence (AI) models in investigating efficiency sorption of heavy metal on biochar. Accordingly, this work investigated and proposed 20 artificial intelligent models for forecasting the sorption efficiency of heavy metal onto biochar based on five machine learning algorithms and bagging technique (BA). Accordingly, support vector machine (SVM), random forest (RF), artificial neural network (ANN), M5Tree, and Gaussian process (GP) algorithms were used as the key algorithms for the aim of this study. Subsequently, the individual models were bagged with each other to generate new ensemble models. Finally, 20 intelligent models were developed and evaluated, including SVM, RF, M5Tree, GP, ANN, BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN. Of those, the hybrid models (i.e., BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN) are introduced as the novelty of this study for estimating the heavy metal's sorption efficiency on the biochar systems. Also, the biochar characteristics, metal sources, and environmental conditions were comprehensively assessed and used, and they are considered as a novelty of the study as well. For this aim, a dataset of sorption efficiency of heavy metal was collected and processed with 353 experimental tests. Various performance indexes were applied to evaluate the models, such as RMSE, R2, MAE, color intensity, Taylor diagram, box and whiskers plots. This study's findings revealed that AI models could predict heavy metal's sorption efficiency onto biochar with high reliability, and the efficiency of the ensemble models is higher than those of individual models. The results also reported that the SVM-ANN ensemble model is the most superior model among 20 developed models. The predictive model proposed that heavy metal's efficiency sorption on biochar can be accurately forecasted and early warning for the water pollution by heavy metal.
    Matched MeSH terms: Artificial Intelligence*
  19. Hamada M, Zaidan BB, Zaidan AA
    J Med Syst, 2018 Jul 24;42(9):162.
    PMID: 30043178 DOI: 10.1007/s10916-018-1020-8
    The study of electroencephalography (EEG) signals is not a new topic. However, the analysis of human emotions upon exposure to music considered as important direction. Although distributed in various academic databases, research on this concept is limited. To extend research in this area, the researchers explored and analysed the academic articles published within the mentioned scope. Thus, in this paper a systematic review is carried out to map and draw the research scenery for EEG human emotion into a taxonomy. Systematically searched all articles about the, EEG human emotion based music in three main databases: ScienceDirect, Web of Science and IEEE Xplore from 1999 to 2016. These databases feature academic studies that used EEG to measure brain signals, with a focus on the effects of music on human emotions. The screening and filtering of articles were performed in three iterations. In the first iteration, duplicate articles were excluded. In the second iteration, the articles were filtered according to their titles and abstracts, and articles outside of the scope of our domain were excluded. In the third iteration, the articles were filtered by reading the full text and excluding articles outside of the scope of our domain and which do not meet our criteria. Based on inclusion and exclusion criteria, 100 articles were selected and separated into five classes. The first class includes 39 articles (39%) consists of emotion, wherein various emotions are classified using artificial intelligence (AI). The second class includes 21 articles (21%) is composed of studies that use EEG techniques. This class is named 'brain condition'. The third class includes eight articles (8%) is related to feature extraction, which is a step before emotion classification. That this process makes use of classifiers should be noted. However, these articles are not listed under the first class because these eight articles focus on feature extraction rather than classifier accuracy. The fourth class includes 26 articles (26%) comprises studies that compare between or among two or more groups to identify and discover human emotion-based EEG. The final class includes six articles (6%) represents articles that study music as a stimulus and its impact on brain signals. Then, discussed the five main categories which are action types, age of the participants, and number size of the participants, duration of recording and listening to music and lastly countries or authors' nationality that published these previous studies. it afterward recognizes the main characteristics of this promising area of science in: motivation of using EEG process for measuring human brain signals, open challenges obstructing employment and recommendations to improve the utilization of EEG process.
    Matched MeSH terms: Artificial Intelligence*
  20. Malays J Pathol, 2019 Dec;41(3):431-457.
    PMID: 31901928
    No abstract available.
    Matched MeSH terms: Artificial Intelligence*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links