METHODS: Prospective, surveillance study on peripheral venous catheter-associated bloodstream infections conducted from 1 September 2013 to 31 May 2019 in 262 intensive care units, members of the International Nosocomial Infection Control Consortium, from 78 hospitals in 32 cities of 8 countries in the South-East Asia Region: China, India, Malaysia, Mongolia, Nepal, Philippines, Thailand, and Vietnam. For this research, we applied definition and criteria of the CDC NHSN, methodology of the INICC, and software named INICC Surveillance Online System.
RESULTS: We followed 83,295 intensive care unit patients for 369,371 bed-days and 376,492 peripheral venous catheter-days. We identified 999 peripheral venous catheter-associated bloodstream infections, amounting to a rate of 2.65/1000 peripheral venous catheter-days. Mortality in patients with peripheral venous catheter but without peripheral venous catheter-associated bloodstream infections was 4.53% and 12.21% in patients with peripheral venous catheter-associated bloodstream infections. The mean length of stay in patients with peripheral venous catheter but without peripheral venous catheter-associated bloodstream infections was 4.40 days and 7.11 days in patients with peripheral venous catheter and peripheral venous catheter-associated bloodstream infections. The microorganism profile showed 67.1% were Gram-negative bacteria: Escherichia coli (22.9%), Klebsiella spp (10.7%), Pseudomonas aeruginosa (5.3%), Enterobacter spp. (4.5%), and others (23.7%). The predominant Gram-positive bacteria were Staphylococcus aureus (11.4%).
CONCLUSIONS: Infection prevention programs must be implemented to reduce the incidence of peripheral venous catheter-associated bloodstream infections.
METHODS: During the 6-year study period, prospective data from 532,483 ICU patients hospitalized in 242 hospitals, for an aggregate of 2,197,304 patient days, were collected through the INICC Surveillance Online System (ISOS). The Centers for Disease Control and Prevention-National Healthcare Safety Network (CDC-NHSN) definitions for device-associated health care-associated infection (DA-HAI) were applied.
RESULTS: Although device use in INICC ICUs was similar to that reported from CDC-NHSN ICUs, DA-HAI rates were higher in the INICC ICUs: in the medical-surgical ICUs, the pooled central line-associated bloodstream infection rate was higher (5.05 vs 0.8 per 1,000 central line-days); the ventilator-associated pneumonia rate was also higher (14.1 vs 0.9 per 1,000 ventilator-days,), as well as the rate of catheter-associated urinary tract infection (5.1 vs 1.7 per 1,000 catheter-days). From blood cultures samples, frequencies of resistance, such as of Pseudomonas aeruginosa to piperacillin-tazobactam (33.0% vs 18.3%), were also higher.
CONCLUSIONS: Despite a significant trend toward the reduction in INICC ICUs, DA-HAI rates are still much higher compared with CDC-NHSN's ICUs representing the developed world. It is INICC's main goal to provide basic and cost-effective resources, through the INICC Surveillance Online System to tackle the burden of DA-HAIs effectively.
METHODS: A total of 210 Aeromonas clinical isolates were investigated: 116 from Singapore General Hospital and 94 archived clinical isolates from University of Malaya Medical Center, Malaysia. The isolates were genetically identified based on the gcat gene screening and the partial sequences of the rpoD housekeeping gene. Genetic relatedness, distribution of 15 virulence genes and 4 beta-lactamase resistance genes, and susceptibility patterns to 11 antimicrobial agents were compared.
RESULTS: Of the 210 Aeromonas isolates, A. dhakensis-94 (45%) was the dominant species in Singapore and Malaysia. Species composition was similar and enterobacterial repetitive intergenic consensus-PCR did not show genetic relatedness between strains from the two countries. Of the 15 virulence genes, A. dhakensis and A. hydrophila harbored the most compared with other species. Different combinations of 9 virulence genes (exu, fla, lip, eno, alt, dam, hlyA, aexU, and ascV) were present in A. dhakensis, A. hydrophila, and A. veronii from both the countries. Distribution of virulence genes was species and anatomic site related. Majority (>80%) of the strains were susceptible to all antimicrobial agents tested, except amoxicillin and cephalothin. A. dhakensis strains from Malaysia significantly harbored the cphA gene compared with A. dhakensis from Singapore. Multidrug resistance was mostly detected in strains from peritoneal fluids of dialysis patients.
CONCLUSION: This study revealed A. dhakensis as the dominant species isolated in both geographic regions, and that it carried a high number of virulence genes. It also highlights the geographic-related differences of virulence gene distribution and antimicrobial resistance profiles of clinical Aeromonas strains from Singapore and Malaysia.