Displaying publications 61 - 75 of 75 in total

Abstract:
Sort:
  1. Burgeiro A, Fuhrmann A, Cherian S, Espinoza D, Jarak I, Carvalho RA, et al.
    Am J Physiol Endocrinol Metab, 2016 Apr 01;310(7):E550-64.
    PMID: 26814014 DOI: 10.1152/ajpendo.00384.2015
    Type 2 diabetes mellitus is a complex metabolic disease, and cardiovascular disease is a leading complication of diabetes. Epicardial adipose tissue surrounding the heart displays biochemical, thermogenic, and cardioprotective properties. However, the metabolic cross-talk between epicardial fat and the myocardium is largely unknown. This study sought to understand epicardial adipose tissue metabolism from heart failure patients with or without diabetes. We aimed to unravel possible differences in glucose and lipid metabolism between human epicardial and subcutaneous adipocytes and elucidate the potential underlying mechanisms involved in heart failure. Insulin-stimulated [(14)C]glucose uptake and isoproterenol-stimulated lipolysis were measured in isolated epicardial and subcutaneous adipocytes. The expression of genes involved in glucose and lipid metabolism was analyzed by reverse transcription-polymerase chain reaction in adipocytes. In addition, epicardial and subcutaneous fatty acid composition was analyzed by high-resolution proton nuclear magnetic resonance spectroscopy. The difference between basal and insulin conditions in glucose uptake was significantly decreased (P= 0.006) in epicardial compared with subcutaneous adipocytes. Moreover, a significant (P< 0.001) decrease in the isoproterenol-stimulated lipolysis was also observed when the two fat depots were compared, and it was strongly correlated with lipolysis, lipid storage, and inflammation-related gene expression. Moreover, the fatty acid composition of these tissues was significantly altered by diabetes. These results emphasize potential metabolic differences between both fat depots in the presence of heart failure and highlight epicardial fat as a possible therapeutic target in situ in the cardiac microenvironment.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  2. Giribabu N, Karim K, Kilari EK, Nelli SR, Salleh N
    Inflammopharmacology, 2020 Dec;28(6):1599-1622.
    PMID: 32588370 DOI: 10.1007/s10787-020-00733-3
    Centella asiatica is claimed to have a neuroprotective effect; however, its ability to protect the cerebrum against damage in diabetes has never been identified. The aims were to identify the possibility that C. asiatica ameliorates inflammation, oxidative stress, and apoptosis in the cerebrum in diabetes. C. asiatica leave aqueous extract (C. asiatica) (50, 100, and 200 mg/kg/b.w.) were given to diabetic rats for 28 days. Changes in rats' body weight, food and water intakes, and insulin and FBG levels were monitored. Following sacrificed, cerebrum was harvested and subjected for histological, biochemical, and molecular biological analyses. The results revealed treatment with C. asiatica was able to ameliorate the loss in body weight, the increase in food and water intakes, the decrease in insulin, and the increase in FBG levels in diabetic rats. Additionally, histopathological changes in the cerebrum and levels of p38, ERK, JNK, cytosolic Nrf2, Keap-1, LPO, RAGE, and AGE levels decreased; however, PI3K, AKT, IR, IRS, GLUT-1, nuclear Nrf2, Nqo-1, Ho-1, and anti-oxidative enzymes (SOD, CAT, and GPx) levels increased in diabetic rats receiving C. asiatica. Furthermore, C. asiatica treatment also caused cerebral inflammation and apoptosis to decrease as indicated by decreased inflammatory markers (cytosolic NF-κB p65, p-Ikkβ, Ikkβ, iNOS, COX-2, TNF-α, IL-6, and IL-1β), decreased pro-apoptosis markers (Casp-3, 9, and Bax), but increased anti-apoptosis marker, Bcl-2. Activity level of Na+/K+, Mg2+, and Ca2+-ATPases in the cerebrum also increased by C. asiatica treatment. Conclusions: C. asiatica treatment helps to prevent cerebral damage and maintain near normal cerebral function in diabetes.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  3. Mohd Fauzi F, John CM, Karunanidhi A, Mussa HY, Ramasamy R, Adam A, et al.
    J Ethnopharmacol, 2017 Feb 02;197:61-72.
    PMID: 27452659 DOI: 10.1016/j.jep.2016.07.058
    ETHNOPHARMACOLOGICAL RELEVANCE: Cassia auriculata (CA) is used as an antidiabetic therapy in Ayurvedic and Siddha practice. This study aimed to understand the mode-of-action of CA via combined cheminformatics and in vivo biological analysis. In particular, the effect of 10 polyphenolic constituents of CA in modulating insulin and immunoprotective pathways were studied.

    MATERIALS AND METHODS: In silico target prediction was first employed to predict the probability of the polyphenols interacting with key protein targets related to insulin signalling, based on a model trained on known bioactivity data and chemical similarity considerations. Next, CA was investigated in in vivo studies where induced type 2 diabetic rats were treated with CA for 28 days and the expression levels of genes regulating insulin signalling pathway, glucose transporters of hepatic (GLUT2) and muscular (GLUT4) tissue, insulin receptor substrate (IRS), phosphorylated insulin receptor (AKT), gluconeogenesis (G6PC and PCK-1), along with inflammatory mediators genes (NF-κB, IL-6, IFN-γ and TNF-α) and peroxisome proliferators-activated receptor gamma (PPAR-γ) were determined by qPCR.

    RESULTS: In silico analysis shows that several of the top 20 enriched targets predicted for the constituents of CA are involved in insulin signalling pathways e.g. PTPN1, PCK-α, AKT2, PI3K-γ. Some of the predictions were supported by scientific literature such as the prediction of PI3K for epigallocatechin gallate. Based on the in silico and in vivo findings, we hypothesized that CA may enhance glucose uptake and glucose transporter expressions via the IRS signalling pathway. This is based on AKT2 and PI3K-γ being listed in the top 20 enriched targets. In vivo analysis shows significant increase in the expression of IRS, AKT, GLUT2 and GLUT4. CA may also affect the PPAR-γ signalling pathway. This is based on the CA-treated groups showing significant activation of PPAR-γ in the liver compared to control. PPAR-γ was predicted by the in silico target prediction with high normalisation rate although it was not in the top 20 most enriched targets. CA may also be involved in the gluconeogenesis and glycogenolysis in the liver based on the downregulation of G6PC and PCK-1 genes seen in CA-treated groups. In addition, CA-treated groups also showed decreased cholesterol, triglyceride, glucose, CRP and Hb1Ac levels, and increased insulin and C-peptide levels. These findings demonstrate the insulin secretagogue and sensitizer effect of CA.

    CONCLUSION: Based on both an in silico and in vivo analysis, we propose here that CA mediates glucose/lipid metabolism via the PI3K signalling pathway, and influence AKT thereby causing insulin secretion and insulin sensitivity in peripheral tissues. CA enhances glucose uptake and expression of glucose transporters in particular via the upregulation of GLUT2 and GLUT4. Thus, based on its ability to modulate immunometabolic pathways, CA appears as an attractive long term therapy for T2DM even at relatively low doses.

    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  4. Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, et al.
    Comput Biol Chem, 2018 Dec;77:72-86.
    PMID: 30245349 DOI: 10.1016/j.compbiolchem.2018.09.007
    The heterocyclic compounds have been extensively reported for their bioactivity potential. The current research work reports the synthesis of some new multi-functional derivatives of 2-furoic piperazide (1; 1-(2-furoyl)piperazine). The synthesis was initiated by reacting the starting compound 1 with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) in a basic, polar and protic medium to obtain the parent sulfonamide 3 which was then treated with different electrophiles, 4a-g, in a polar and aprotic medium to acquire the designed molecules, 5a-g. These convergent derivatives were evaluated for their inhibitory potential against α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Acarbose was used as a reference standard for α-glucosidase inhibition while eserine for AChE and BChE inhibition. Some of the synthesized compounds were identified as promising inhibitors of these three enzymes and their bioactivity potentials were also supported by molecular docking study. The most active compounds among the synthetic analogues might be helpful in drug discovery and development for the treatment of type 2 diabetes and Alzhiemer's diseases.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  5. Chaudhry SRY, Akram A, Aslam N, Wajid M, Iqbal Z, Nazir I, et al.
    Pak J Pharm Sci, 2019 Mar;32(2):505-514.
    PMID: 31081759
    Echinops echinatus is traditionally an important plant that finds its extensive use as a diuretic, anti-inflammatory, anti-pyretic, nerve tonic, abortifacient, aphrodisiac, antiasthmatic, and antidiabetic agent. The current study investigates protection against the hyperglycemia and dyslipidemia in alloxan-induced (type I diabetes) and fructose-fed insulin resistance (type II diabetes) models of diabetes treated with aqueous methanolic root extract of E. echinatus (Ee.Cr). Albino rats were treated orally with Ee.Cr at doses 100, 300 and 500mg/kg. The fasting blood glucose was measured by glucometer, while standard kits were used to determine the levels of serum total cholesterol, triglycerides and HDL. The administration of Ee.Cr significantly (P<0.001) reduced the FBG concentration in a dose-dependent pattern in alloxan-induced and fructose-fed diabetic rats. The Ee.Cr also corrected the dyslipidemia associated with fructose and alloxan-induced diabetes by significantly (P<0.001) decreasing the concentration of serum total cholesterol, triglycerides, and LDL and by increasing HDL concentration. Ee.Cr also significantly (P<0.001) improved the glucose tolerance in fructose-fed rats. We conclude that Ee.Cr has antidiabetic and antidyslipidemic effects in both insulin-dependent alloxan-induced diabetes and fructose-induced insulin resistance diabetes rat models.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  6. Hanipah ZN, Schauer PR
    Annu Rev Med, 2020 01 27;71:1-15.
    PMID: 31986081 DOI: 10.1146/annurev-med-053117-123246
    Metabolic surgery is increasingly becoming recognized as a more effective treatment for patients with type 2 diabetes (T2D) and obesity as compared to lifestyle modification and medical management alone. Both observational studies and clinical trials have shown metabolic surgery to result in sustained weight loss (20-30%), T2D remission rates ranging from 23% to 60%, and improvement in cardiovascular risk factors such as hypertension and dyslipidemia. Metabolic surgery is cost-effective and relatively safe, with perioperative risks and mortality comparable to low-risk procedures such as cholecystectomy, hysterectomy, and appendectomy. International diabetes and medical organizations have endorsed metabolic surgery as a standard treatment for T2D with obesity.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  7. Pan CY, So WY, Khalid BA, Mohan V, Thai AC, Zimmet P, et al.
    Diabet Med, 2004 Sep;21(9):1007-13.
    PMID: 15317606 DOI: 10.1111/j.1464-5491.2004.01287.x
    AIM: To describe the clinical, biochemical and immunological characteristics of young-onset diabetes in Asia.
    METHODS: Clinical, biochemical and immunological variables were assessed in 919 newly diagnosed (duration less than 12 months) young onset Asian diabetic patients aged between 12 and 40 years. The subjects constituted 57% Chinese, 29% Indians and 14% Malays, recruited from diabetes centres in China, Hong Kong, India, Malaysia and Singapore.
    RESULTS: The mean age (+/- sd) was 31.6 +/- 7.2 years, with the majority (66%) in the 31-40 years age group. Mean body mass index (BMI) (+/- sd) was 25.3 +/- 5.0 kg/m2 with 47% exceeding the suggested Asian cut-off point for obesity (BMI > or = 25). Ethnic difference in clinical characteristics included BMI, blood pressure, mode of treatment and degree of insulin resistance. Most patients had a clinical presentation of Type 2 diabetes. About 10% had a classical combination of ketotic presentation, presence of autoimmune-markers and documented insulin deficiency indicative of Type 1 diabetes. Forty-eight percent were receiving oral hypoglycaemic agents (OHAs) while 31% were on diet only, 18% were receiving insulin and 2% were on a combination of insulin and OHA.
    CONCLUSION: Young onset diabetes patients in Asia represent a heterogeneous group in terms of their clinical and biochemical characteristics and classical Type 1 diabetes is relatively uncommon. The 5-year follow up study will determine the progress of these patients and help to clarify the natural history.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  8. Liu S, Liu JJ, Gurung RL, Chan C, Yeo D, Ang K, et al.
    Ann Acad Med Singap, 2019 Jul;48(7):217-223.
    PMID: 31495867
    INTRODUCTION: The risk for diabetes progression varies greatly in individuals with type 2 diabetes mellitus (T2DM). We aimed to study the clinical determinants of diabetes progression in multiethnic Asians with T2DM.

    MATERIALS AND METHODS: A total of 2057 outpatients with T2DM from a secondary-level Singapore hospital were recruited for the study. Diabetes progression was defined as transition from non-insulin use to requiring sustained insulin treatment or glycated haemoglobin (HbA1c) ≥8.5% when treated with 2 or more oral hypoglycaemic medications. Multivariable logistic regression (LR) was used to study the clinical and biochemical variables that were independently associated with diabetes progression. Forward LR was then used to select variables for a parsimonious model.

    RESULTS: A total of 940 participants with no insulin use or indication for insulin treatment were analysed. In 3.2 ± 0.4 (mean ± SD) years' follow-up, 163 (17%) participants experienced diabetes progression. Multivariable LR revealed that age at T2DM diagnosis (odds ratio [95% confidence interval], 0.96 [0.94-0.98]), Malay ethnicity (1.94 [1.19-3.19]), baseline HbA1c (2.22 [1.80-2.72]), body mass index (0.96 [0.92-1.00]) and number of oral glucose-lowering medications (1.87 [1.39-2.51]) were independently associated with diabetes progression. Area under receiver operating characteristic curve of the parsimonious model selected by forward LR (age at T2DM diagnosis, Malay ethnicity, HbA1c and number of glucose-lowering medication) was 0.76 (95% CI, 0.72-0.80).

    CONCLUSION: Young age at T2DM diagnosis, high baseline HbA1c and Malay ethnicity are independent determinants of diabetes progression in Asians with T2DM. Further mechanistic studies are needed to elucidate the pathophysiology underpinning progressive loss of glycaemic control in patients with T2DM.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  9. Lee YF, Sim XY, Teh YH, Ismail MN, Greimel P, Murugaiyah V, et al.
    Biotechnol Appl Biochem, 2021 Oct;68(5):1014-1026.
    PMID: 32931602 DOI: 10.1002/bab.2021
    High-fat diet (HFD) interferes with the dietary plan of patients with type 2 diabetes mellitus (T2DM). However, many diabetes patients consume food with higher fat content for a better taste bud experience. In this study, we examined the effect of HFD on rats at the early onset of diabetes and prediabetes by supplementing their feed with palm olein oil to provide a fat content representing 39% of total calorie intake. Urinary profile generated from liquid chromatography-mass spectrometry analysis was used to construct the orthogonal partial least squares discriminant analysis (OPLS-DA) score plots. The data provide insights into the physiological state of an organism. Healthy rats fed with normal chow (NC) and HFD cannot be distinguished by their urinary metabolite profiles, whereas diabetic and prediabetic rats showed a clear separation in OPLS-DA profile between the two diets, indicating a change in their physiological state. Metformin treatment altered the metabolomics profiles of diabetic rats and lowered their blood sugar levels. For prediabetic rats, metformin treatment on both NC- and HFD-fed rats not only reduced their blood sugar levels to normal but also altered the urinary metabolite profile to be more like healthy rats. The use of metformin is therefore beneficial at the prediabetes stage.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  10. Ooi J, Adamu HA, Imam MU, Ithnin H, Ismail M
    Biomed Pharmacother, 2018 Feb;98:125-133.
    PMID: 29248832 DOI: 10.1016/j.biopha.2017.12.002
    This study aimed to evaluate the effect of ethyl acetate fraction (EAF) isolated from Molineria latifolia rhizome as dietary interventions for type 2 diabetes mellitus (T2DM) and its underlying molecular mechanisms in vivo. Experimental rats were induced by high fat diet feeding coupled with combined exposure to streptozotocin and nicotinamide. Treatment with EAF improved glucose tolerance and lipid profiles, but the insulin secretion was unaltered. Gene expression analyses on insulin/adipocytokine signalling-related genes demonstrated tissue-specific transcriptional responses. In skeletal muscle and liver tissues, Socs1, Tnf and Mapk8 showed consistent transcript regulation. Furthermore, hepatic translational analyses revealed sensitization on proximal insulin signalling, with reduced expression of IRS1 serine phosphorylation, increased IRS1 tyrosine phosphorylation and increased phospho-AKT (Ser473). The present findings suggested that EAF exerted its effect by modulating insulin signalling, potentially via IRS1/AKT activation. The pharmacological attributes of EAF may implicate its potential therapeutic applications for diabetes management.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  11. Chin CY, Ng PY, Ng SF
    Drug Deliv Transl Res, 2019 04;9(2):453-468.
    PMID: 29560587 DOI: 10.1007/s13346-018-0510-z
    Previously, Moringa oleifera leaf (MOL) standardised aqueous extract-loaded films were successfully developed and they showed potential wound healing activity in vitro. The objective of this study was to evaluate in vivo dermal safety as well as wound healing efficacy of these MOL film dressings (containing 0.1, 0.5 and 1% MOL) on diabetic rat model. The acute dermal toxicity was carried out on healthy rats, and signs of toxicity over 14 days were observed. For wound healing studies, excision and abrasion wounds were created out on the STZ/HFD-induced diabetic rat model and the wound healing was studied over 21 days. The wound healing evaluation determined by histology staining, hydroxyproline assay and ELISA assays on wound healing related-growth factors, cytokines and chemokines. MOL film formulations exhibited no signs of dermal toxicities. In excision wound model, 0.5% film significantly enhanced the wound closure by 77.67 ± 7.28% at day 7 compared to control group. While in abrasion wounds, 0.5% MOL films accelerated wound closure significantly at 81 ± 4.5% as compared to the control. The histology findings and hydroxyproline assay revealed that high collagen deposition and complete re-epithelialisation were observed for the wounds treated with 0.5 and 1% MOL films. All MOL film dressings had successfully tested non-toxic via in vivo safety dermal toxicity. It was concluded that the 0.5% MOL extract-loaded film had proven to be the most promising approach to accelerate diabetic wound healing process in both full-thickness excision and partial thickness abrasion wounds on the HFD/STZ-induced diabetic type II model.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  12. Gothai S, Ganesan P, Park SY, Fakurazi S, Choi DK, Arulselvan P
    Nutrients, 2016 Aug 04;8(8).
    PMID: 27527213 DOI: 10.3390/nu8080461
    Diabetes is a metabolic, endocrine disorder which is characterized by hyperglycemia and glucose intolerance due to insulin resistance. Extensive research has confirmed that inflammation is closely involved in the pathogenesis of diabetes and its complications. Patients with diabetes display typical features of an inflammatory process characterized by the presence of cytokines, immune cell infiltration, impaired function and tissue destruction. Numerous anti-diabetic drugs are often prescribed to diabetic patients, to reduce the risk of diabetes through modulation of inflammation. However, those anti-diabetic drugs are often not successful as a result of side effects; therefore, researchers are searching for efficient natural therapeutic targets with less or no side effects. Natural products' derived bioactive molecules have been proven to improve insulin resistance and associated complications through suppression of inflammatory signaling pathways. In this review article, we described the extraction, isolation and identification of bioactive compounds and its molecular mechanisms in the prevention of diabetes associated complications.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  13. Abdel-Rahman RF, Ezzat SM, Ogaly HA, Abd-Elsalam RM, Hessin AF, Fekry MI, et al.
    J Nutr Sci, 2020 01 20;9:e2.
    PMID: 32042410 DOI: 10.1017/jns.2019.40
    Ficus deltoidea var. deltoidea Jack (FD) is a well-known plant used in Malay folklore medicine to lower blood glucose in diabetic patients. For further research of the antihyperglycemic mechanisms, the protein tyrosine phosphatase 1B (PTP1B)-inhibitory effect of FD was analysed both in vitro and in vivo. To optimise a method for FD extraction, water, 50, 70, 80, 90 and 95 % ethanol extracts were prepared and determined for their total phenolic and triterpene contents, and PTP1B-inhibition capacity. Among the tested extracts, 70 % ethanol FD extract showed a significant PTP1B inhibition (92·0 % inhibition at 200 µg/ml) and high phenolic and triterpene contents. A bioassay-guided fractionation of the 70 % ethanol extract led to the isolation of a new triterpene (3β,11β-dihydroxyolean-12-en-23-oic acid; F3) along with six known compounds. In vivo, 4 weeks' administration of 70 % ethanol FD extract (125, 250 and 500 mg/kg/d) to streptozotocin-nicotinamide-induced type 2 diabetic rats reversed the abnormal changes of blood glucose, insulin, total Hb, GLUT2, lipid profile, and oxidative stress in liver and pancreas. Moreover, FD reduced the mRNA expression of the key gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and glucose 6-phosphatase) and restored insulin receptor and GLUT2 encoding gene (Slc2a2) expression. In addition, FD significantly down-regulated the hepatic PTP1B gene expression. These results revealed that FD could potentially improve insulin sensitivity, suppress hepatic glucose output and enhance glucose uptake in type 2 diabetes mellitus through down-regulation of PTP1B. Together, our findings give scientific evidence for the traditional use of FD as an antidiabetic agent.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  14. Lau YS, Tian XY, Mustafa MR, Murugan D, Liu J, Zhang Y, et al.
    Br J Pharmacol, 2013 Nov;170(6):1190-8.
    PMID: 23992296 DOI: 10.1111/bph.12350
    Boldine is a potent natural antioxidant present in the leaves and bark of the Chilean boldo tree. Here we assessed the protective effects of boldine on endothelium in a range of models of diabetes, ex vivo and in vitro.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  15. Wada T, Mori-Anai K, Kawaguchi Y, Katsumata H, Tsuda H, Iida M, et al.
    J Diabetes Investig, 2022 Jan;13(1):54-64.
    PMID: 34212533 DOI: 10.1111/jdi.13624
    AIMS/INTRODUCTION: The sodium-glucose cotransporter 2 inhibitor, canagliflozin, reduced kidney failure and cardiovascular events in the Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial. We carried out a post-hoc analysis to evaluate the efficacy and safety of canagliflozin in a subgroup of participants in East and South-East Asian (EA) countries who are at high risk of renal complications.

    MATERIALS AND METHODS: Participants with an estimated glomerular filtration rate of 30 to <90 mL/min/1.73 m2 and urinary albumin-to-creatinine ratio of >300-5,000 mg/g were randomized to 100 mg of canagliflozin or a placebo. The effects of canagliflozin treatment on pre-specified efficacy and safety outcomes were examined using Cox proportional hazards regression between participants from EA countries (China, Japan, Malaysia, the Philippines, South Korea and Taiwan) and the remaining participants.

    RESULTS: Of 4,401 participants, 604 (13.7%) were from EA countries; 301 and 303 were assigned to the canagliflozin and placebo groups, respectively. Canagliflozin lowered the risk of primary outcome (composite of end-stage kidney disease, doubling of serum creatinine level, or renal or cardiovascular death) in EA participants (hazard ratio 0.54, 95% confidence interval 0.35-0.84). The effects of canagliflozin on renal and cardiovascular outcomes in EA participants were generally similar to those of the remaining participants. Safety outcomes were similar between the EA and non-EA participants.

    CONCLUSIONS: In the CREDENCE trial, the risk of renal and cardiovascular events was safely reduced in participants from EA countries at high risk of renal events.

    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links