SHORT CONCLUSION: In conclusion, INDELs and VNTRs could have important functional consequences in the pathophysiology of obesity, and research on them should be continued to facilitate obesity prediction, prevention, and treatment.
METHODS: We consider several PRSs trained using European and/or Asian GWAS. For each PRS, we evaluate the discrimination and calibration of three absolute risk models among 41 031 women from the Korean Cancer Prevention Study (KCPS)-II Biobank: (i) a model using incidence, mortality and risk factor distributions (reference inputs) among US women and European relative risks; (ii) a recalibrated model, using Korean reference but European relative risks; and (iii) a fully Korean-based model using Korean reference and relative risk estimates from KCPS.
RESULTS: All Asian and European PRS improved discrimination over lifestyle, clinical and environmental (Qx) factors in Korean women. US-based absolute risk models overestimated the risks for women aged ≥50 years, and this overestimation was larger for models that only included PRS (expected-to-observed ratio E/O = 1.2 for women <50, E/O = 2.7 for women ≥50). Recalibrated and Korean-based risk models had better calibration in the large, although the risk in the highest decile was consistently overestimated. Absolute risk projections suggest that risk-reducing lifestyle changes would lead to larger absolute risk reductions among women at higher PRS.
CONCLUSIONS: Absolute risk models incorporating PRS trained in European and Asian GWAS and population-appropriate average age-specific incidences may be useful for risk-stratified interventions in Korean women.
METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,023 prostate cancer patients (3,513 disease-specific deaths) from the PRACTICAL and BPC3 consortia. Top findings were assessed for replication in a Norwegian cohort (CONOR).
RESULTS: We observed no significant association between genetic variants and prostate cancer survival.
CONCLUSIONS: Common genetic variants with large impact on prostate cancer survival were not observed in this study.
IMPACT: Future studies should be designed for identification of rare variants with large effect sizes or common variants with small effect sizes.
METHODS: DNA methylation profiles (Illumina Infinium® HumanMethylation450 BeadChip) from 1941 individuals from four population-based European cohorts were analysed in relation to body mass index, waist circumference, waist-hip and waist-height ratio within a meta-analytical framework. In a subset of these individuals, data on genome-wide gene expression level, biomarkers of glucose and lipid metabolism were also available. Validation of methylation markers associated with all adiposity measures was performed in 358 individuals. Finally, we investigated the association of obesity-related methylation marks with breast, colorectal cancer and myocardial infarction within relevant subsets of the discovery population.
RESULTS: We identified 40 CpG loci with methylation levels associated with at least one adiposity measure. Of these, one CpG locus (cg06500161) in ABCG1 was associated with all four adiposity measures (P = 9.07×10-8 to 3.27×10-18) and lower transcriptional activity of the full-length isoform of ABCG1 (P = 6.00×10-7), higher triglyceride levels (P = 5.37×10-9) and higher triglycerides-to-HDL cholesterol ratio (P = 1.03×10-10). Of the 40 informative and obesity-related CpG loci, two (in IL2RB and FGF18) were significantly associated with colorectal cancer (inversely, P
METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases).
RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk.
CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry.
METHODS: Using LDScore regression, we explored the genetic correlation between endometrial cancer and ovarian cancer. To identify loci associated with the risk of both cancers, we implemented a pipeline of statistical genetic analyses (i.e., inverse-variance meta-analysis, colocalization, and M-values) and performed analyses stratified by subtype. Candidate target genes were then prioritized using functional genomic data.
RESULTS: Genetic correlation analysis revealed significant genetic correlation between the two cancers (rG = 0.43, P = 2.66 × 10-5). We found seven loci associated with risk for both cancers (P Bonferroni < 2.4 × 10-9). In addition, four novel subgenome-wide regions at 7p22.2, 7q22.1, 9p12, and 11q13.3 were identified (P < 5 × 10-7). Promoter-associated HiChIP chromatin loops from immortalized endometrium and ovarian cell lines and expression quantitative trait loci data highlighted candidate target genes for further investigation.
CONCLUSIONS: Using cross-cancer GWAS meta-analysis, we have identified several joint endometrial and ovarian cancer risk loci and candidate target genes for future functional analysis.
IMPACT: Our research highlights the shared genetic relationship between endometrial cancer and ovarian cancer. Further studies in larger sample sets are required to confirm our findings.
METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).
RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.
CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.
METHODS: To this end, we undertook a pilot genome-wide CNV analysis approach in 36 subjects (18 patients with high-grade PCa and 18 controls that were matched by age and ethnicity) in search of more accurate biomarkers that could potentially explain susceptibility toward high-grade PCa. We conducted this study using the array comparative genomic hybridization technique. Array results were validated in 92 independent samples (46 high-grade PCa, 23 benign prostatic hyperplasia, and 23 healthy controls) using polymerase chain reaction-based copy number counting method.
RESULTS: A total of 314 CNV regions were found to be unique to PCa subjects in this cohort (P<0.05). A log2 ratio-based copy number analysis revealed 5 putative rare or novel CNV loci or both associated with susceptibility to PCa. The CNV gain regions were 1q21.3, 15q15, 7p12.1, and a novel CNV in PCa 12q23.1, harboring ARNT, THBS1, SLC5A8, and DDC genes that are crucial in the p53 and cancer pathways. A CNV loss and deletion event was observed at 8p11.21, which contains the SFRP1 gene from the Wnt signaling pathway. Cross-comparison analysis with genes associated to PCa revealed significant CNVs involved in biological processes that elicit cancer pathogenesis via cytokine production and endothelial cell proliferation.
CONCLUSION: In conclusion, we postulated that the CNVs identified in this study could provide an insight into the development of advanced PCa.