METHODS: This retrospective cohort study was conducted using breast cancer data from the Kelantan Cancer Registry between 2007 and 2011, and Kelantan general population mortality data. The breast cancer cases were followed up for 5 years until 2016. Out of 598 cases, 549 cases met the study criteria and were included in the analysis. Modelling of excess mortality was conducted using Poisson regression.
RESULTS: Excess mortality of breast cancer varied according to age group (50 years old and below vs above 50 years old, Adj. EHR: 1.47; 95% CI: 1.31, 4.09; P = 0.004), ethnicity (Malay vs non-Malay, Adj. EHR: 2.31; 95% CI: 1.11, 1.96; P = 0.008), and stage (stage III and IV vs. stage I and II, Adj. EHR: 5.75; 95% CI: 4.24, 7.81; P
METHODS: MEDLINE/PubMed and Google scholar databases were used for the selection of literature. The keywords used were mesenchymal stem cells, extracellular vesicles, clinical application of EVs and challenges EVs production.
RESULTS: These EVs have demonstrated robust capabilities in transporting intracellular cargo, playing a critical role in facilitating cell-to-cell communication by carrying functional molecules, including proteins, RNA species, DNAs, and lipids. Utilizing EVs as an alternative to stem cells offers several benefits, such as improved safety, reduced immunogenicity, and the ability to traverse biological barriers. Consequently, EVs have emerged as an increasingly attractive option for clinical use.
CONCLUSION: From this perspective, this review delves into the advantages and challenges associated with employing MSC-EVs in clinical settings, with a specific focus on their potential in treating conditions like lung diseases, cancer, and autoimmune disorders.