Displaying publications 61 - 80 of 676 in total

Abstract:
Sort:
  1. Nurhafizah WWI, Lee KL, Laith A AR, Nadirah M, Danish-Daniel M, Zainathan SC, et al.
    J Invertebr Pathol, 2021 11;186:107594.
    PMID: 33878330 DOI: 10.1016/j.jip.2021.107594
    Global high demand for Pacific white shrimp Penaeus vannamei has led to intensified cultivation and a wide range of disease problems, including bacterial diseases due to vibrios. Three presumptive luminescent Vibrio harveyi strains (Vh5, Vh8 and Vh10) were isolated from the hepatopancreas (Vh5) and haemolymph (Vh8 and Vh10) of diseased growout Pacific white shrimp from a farm in Setiu, Terengganu, Malaysia, using Vibrio harveyi agar (VHA) differential medium. All three strains were identified as V. harveyi by biochemical characteristics. 16S rRNA gene-based phylogenetic analyses by neighbour-joining, maximum likelihood and maximum parsimony methods showed all three strains in the V. harveyi cluster. All three strains were β-haemolytic and positive for motility, biofilm formation and extracellular products (caseinase, gelatinase, lipase, DNase, amylase and chitinase). Vh10 was subjected to pathogenicity test in Pacific white shrimp by immersion challenge and determined to have a LC50 of 6.0 × 108 CFU mL-1 after 168 h of exposure. Antibiotic susceptibility tests showed that all strains were resistant to oxytetracycline (OXT30), oleandomycin (OL15), amoxicillin (AML25), ampicillin (AMP10) and colistin sulphate (CT25) but sensitive to doxycycline (DO30), flumequine (UB30), oxolinic acid (OA2), chloramphenicol (C30), florfenicol (FFC30), nitrofurantoin (F5) and fosfomycin (FOS50). Each strain was also resistant to a slightly different combination of eight other antibiotics, with an overall multiple antibiotic resistance (MAR) index of 0.40, suggesting prior history of heavy exposure to the antibiotics. Vh10 infection resulted in pale or discoloured hepatopancreas, empty guts, reddening, necrosis and luminescence of uropods, as well as melanised lesions in tail muscle. Histopathological examination showed necrosis of intertubular connective tissue and tubule, sloughing of epithelial cells in hepatopancreatic tubule, haemocytic infiltration, massive vacuolation and loss of hepatopancreatic tubule structure.
    Matched MeSH terms: Vibrio/pathogenicity*
  2. Reza Etemadi M, Ling KH, Zainal Abidin S, Chee HY, Sekawi Z
    PLoS One, 2017;12(5):e0176947.
    PMID: 28558071 DOI: 10.1371/journal.pone.0176947
    Human rhinovirus (HRV) is the common virus that causes acute respiratory infection (ARI) and is frequently associated with lower respiratory tract infections (LRTIs). We aimed to investigate whether HRV infection induces a specific gene expression pattern in airway epithelial cells. Alveolar epithelial cell monolayers were infected with HRV species B (HRV-B). RNA was extracted from both supernatants and infected monolayer cells at 6, 12, 24 and 48 hours post infection (hpi) and transcriptional profile was analyzed using Affymetrix GeneChip and the results were subsequently validated using quantitative Real-time PCR method. HRV-B infects alveolar epithelial cells which supports implication of the virus with LRTIs. In total 991 genes were found differentially expressed during the course of infection. Of these, 459 genes were up-regulated whereas 532 genes were down-regulated. Differential gene expression at 6 hpi (187 genes up-regulated vs. 156 down-regulated) were significantly represented by gene ontologies related to the chemokines and inflammatory molecules indicating characteristic of viral infection. The 75 up-regulated genes surpassed the down-regulated genes (35) at 12 hpi and their enriched ontologies fell into discrete functional entities such as regulation of apoptosis, anti-apoptosis, and wound healing. At later time points of 24 and 48 hpi, predominated down-regulated genes were enriched for extracellular matrix proteins and airway remodeling events. Our data provides a comprehensive image of host response to HRV infection. The study suggests the underlying molecular regulatory networks genes which might be involved in pathogenicity of the HRV-B and potential targets for further validations and development of effective treatment.
    Matched MeSH terms: Rhinovirus/pathogenicity*
  3. Zhang SF, Tuo JL, Huang XB, Zhu X, Zhang DM, Zhou K, et al.
    PLoS One, 2018;13(1):e0191789.
    PMID: 29377913 DOI: 10.1371/journal.pone.0191789
    Human coronavirus (HCoV) is one of the most common causes of respiratory tract infection throughout the world. To investigate the epidemiological and genetic variation of HCoV in Guangzhou, south China, we collected totally 13048 throat and nasal swab specimens from adults and children with fever and acute upper respiratory infection symptoms in Gunazhou, south China between July 2010 and June 2015, and the epidemiological features of HCoV and its species were studied. Specimens were screened for HCoV by real-time RT-PCR, and 7 other common respiratory viruses were tested simultaneously by PCR or real-time PCR. HCoV was detected in 294 cases (2.25%) of the 13048 samples, with most of them inpatients (251 cases, 85.4% of HCoV positive cases) and young children not in nursery (53.06%, 156 out of 294 HCoV positive cases). Four HCoVs, as OC43, 229E, NL63 and HKU1 were detected prevalent during 2010-2015 in Guangzhou, and among the HCoV positive cases, 60.20% were OC43, 16.67% were 229E, 14.97% were NL63 and 7.82% were HKU1. The month distribution showed that totally HCoV was prevalent in winter, but differences existed in different species. The 5 year distribution of HCoV showed a peak-valley distribution trend, with the detection rate higher in 2011 and 2013 whereas lower in 2010, 2012 and 2014. The age distribution revealed that children (especially those <3 years old) and old people (>50 years) were both high risk groups to be infected by HCoV. Of the 294 HCoV positive patients, 34.69% (101 cases) were co-infected by other common respiratory viruses, and influenza virus was the most common co-infecting virus (30/101, 29.70%). Fifteen HCoV-OC43 positive samples of 2013-2014 were selected for S gene sequencing and phylogenetic analysis, and the results showed that the 15 strains could be divided into 2 clusters in the phylogenetic tree, 12 strains of which formed a separate cluster that was closer to genotype G found in Malaysia. It was revealed for the first time that genotype B and genotype G of HCoV-OC43 co-circulated and the newly defined genotype G was epidemic as a dominant genotype during 2013-2014 in Guanzhou, south China.
    Matched MeSH terms: Coronavirus/pathogenicity
  4. Chong ZX, Liew WPP, Ong HK, Yong CY, Shit CS, Ho WY, et al.
    Pathol Res Pract, 2021 Sep;225:153565.
    PMID: 34333398 DOI: 10.1016/j.prp.2021.153565
    Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two common betacoronaviruses, which are still causing transmission among the human population worldwide. The major difference between the two coronaviruses is that MERS-CoV is now causing sporadic transmission worldwide, whereas SARS-CoV-2 is causing a pandemic outbreak globally. Currently, different guidelines and reports have highlighted several diagnostic methods and approaches which could be used to screen and confirm MERS-CoV and SARS-CoV-2 infections. These methods include clinical evaluation, laboratory diagnosis (nucleic acid-based test, protein-based test, or viral culture), and radiological diagnosis. With the presence of these different diagnostic approaches, it could cause a dilemma to the clinicians and diagnostic laboratories in selecting the best diagnostic strategies to confirm MERS-CoV and SARS-CoV-2 infections. Therefore, this review aims to provide an up-to-date comparison of the advantages and limitations of different diagnostic approaches in detecting MERS-CoV and SARS-CoV-2 infections. This review could provide insights for clinicians and scientists in detecting MERS-CoV and SARS-CoV-2 infections to help combat the transmission of these coronaviruses.
    Matched MeSH terms: Middle East Respiratory Syndrome Coronavirus/pathogenicity*
  5. Pang T
    Trends Microbiol, 1998 Sep;6(9):339-42.
    PMID: 9778724
    Matched MeSH terms: Salmonella typhi/pathogenicity
  6. Liu K, Fadzly N, Mansor A, Zakaria R, Ruppert N, Lee CY
    Plant Signal Behav, 2017 Oct 03;12(10):e1371890.
    PMID: 28841358 DOI: 10.1080/15592324.2017.1371890
    Amorphophallus bufo is a rarely studied plant in Malaysian tropical rainforests. We measured the spectral reflectance of different developmental stages of A. bufo (seedlings, juveniles and adults), background soil/ debris and leaves from other neighboring plant species. Results show that the leaves of A. bufo seedling have a similar reflectance curve as the background soil and debris. Adults and juveniles of A. bufo are similar to other neighboring plants' leaf colors. We hypothesize that the cryptic coloration of A. bufo seedlings plays an important role in camouflage and that the numerous black spots on the surface of the petioles and rachises, may serve as a defensive mimicry against herbivores.
    Matched MeSH terms: Insects/pathogenicity
  7. Radu S, Abdul Mutalib S, Rusul G, Ahmad Z, Morigaki T, Asai N, et al.
    Appl Environ Microbiol, 1998 Mar;64(3):1153-6.
    PMID: 9501454
    Twelve strains of Escherichia coli O157:H7 were isolated from 9 of 25 beef samples purchased from retail stores in Malaysia. These strains produced Shiga toxin 2 with or without Shiga toxin 1 and had the eae gene and a 60-MDa plasmid. The antibiograms and the profiles of the arbitrarily primed PCR of the strains were diverse, suggesting that the strains may have originated from diverse sources.
    Matched MeSH terms: Escherichia coli O157/pathogenicity
  8. Huda-Shakirah AR, Kee YJ, Wong KL, Zakaria L, Mohd MH
    Sci Rep, 2021 02 16;11(1):3907.
    PMID: 33594187 DOI: 10.1038/s41598-021-83551-z
    This study aimed to characterize the new fungal disease on the stem of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia, which is known as gray blight through morphological, molecular and pathogenicity analyses. Nine fungal isolates were isolated from nine blighted stems of H. polyrhizus. Based on morphological characteristics, DNA sequences and phylogeny (ITS, TEF1-α, and β-tubulin), the fungal isolates were identified as Diaporthe arecae, D. eugeniae, D. hongkongensis, D. phaseolorum, and D. tectonendophytica. Six isolates recovered from the Cameron Highlands, Pahang belonged to D. eugeniae (DF1 and DF3), D. hongkongensis (DF9), D. phaseolorum (DF2 and DF12), and D. tectonendophytica (DF7), whereas three isolates from Bukit Kor, Terengganu were recognized as D. arecae (DFP3), D. eugeniae (DFP4), and D. tectonendophytica (DFP2). Diaporthe eugeniae and D. tectonendophytica were found in both Pahang and Terengganu, D. phaseolorum and D. hongkongensis in Pahang, whereas D. arecae only in Terengganu. The role of the Diaporthe isolates in causing stem gray blight of H. polyrhizus was confirmed. To date, only D. phaseolorum has been previously reported on Hylocereus undatus. This is the first report on D. arecae, D. eugeniae, D. hongkongensis, D. phaseolorum, and D. tectonendophytica causing stem gray blight of H. polyrhizus worldwide.
    Matched MeSH terms: Ascomycota/pathogenicity
  9. Butt J, Jenab M, Pawlita M, Overvad K, Tjonneland A, Olsen A, et al.
    Cancer Epidemiol Biomarkers Prev, 2019 Sep;28(9):1552-1555.
    PMID: 31481495 DOI: 10.1158/1055-9965.EPI-19-0313
    BACKGROUND: There is a lack of prospective data on the potential association of Fusobacterium nucleatum (F. nucleatum) and colorectal cancer risk. In this study, we assessed whether antibody responses to F. nucleatum are associated with colorectal cancer risk in prediagnostic serum samples in the European Prospective Investigation into Nutrition and Cancer (EPIC) cohort.

    METHODS: We applied a multiplex serology assay to simultaneously measure antibody responses to 11 F. nucleatum antigens in prediagnostic serum samples from 485 colorectal cancer cases and 485 matched controls. Conditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CI).

    RESULTS: We observed neither a statistically significant colorectal cancer risk association for antibodies to individual F. nucleatum proteins nor for combined positivity to any of the 11 proteins (OR, 0.81; 95% CI, 0.62-1.06).

    CONCLUSIONS: Antibody responses to F. nucleatum proteins in prediagnostic serum samples from a subset of colorectal cancer cases and matched controls within the EPIC study were not associated with colorectal cancer risk.

    IMPACT: Our findings in prospectively ascertained serum samples contradict the existing literature on the association of F. nucleatum with colorectal cancer risk. Future prospective studies, specifically detecting F. nucleatum in stool or tissue biopsies, are needed to complement our findings.

    Matched MeSH terms: Fusobacterium nucleatum/pathogenicity*
  10. Tay ST, Rohani MY, Ho TM, Devi S
    PMID: 12971561
    Using cultured mouse fibroblast L929 cells, this study demonstrated the hemolytic and cytotoxic activities and induction of apoptosis in cells infected with Orientia tsutsugamushi. Low levels of hemolytic activity were detected using heavily infected cells. No hemolysin or cytotoxin were detected in the infected culture fluid regardless of the pathogenicity of the O. tsutsugamushi strains in mice. Using propidium iodide uptake assay, acridine orange/ethidium bromide staining and terminal deoxynucleotide transferase-mediated dUTP-digoxigenin nick-end labeling assay, apoptosis was observed in L929 cells infected with Karp and Gilliam strains.
    Matched MeSH terms: Orientia tsutsugamushi/pathogenicity*
  11. Tay ST, Rohani MY, Ho TM, Devi S
    PMID: 12693592
    The pathogenicity of Malaysian isolates of Orientia tsutsugamushi was investigated by a mouse virulence assay. The isolates could be differentiated as low (4 isolates), moderately (3 isolates) and highly virulent (2 isolates) based on the different responses in infected mice. No direct correlation between severity of human scrub typhus infections and virulence of the O. tsutsugamushi in mice was observed. Mice infected with virulent strains of O. tsutsugamushi showed splenomegaly, ascitis accumulation and enlargement of kidneys and livers whereas avirulent O. tsutsugamushi strains were asymptomatic and exhibited ruffled fur for a short period after infection. There was low antibody response in mice infected with isolates of low pathogenicity as compared with those of highly virulent isolates. Upon dissection of the infected mice, enlargement of mouse organs such as spleen, kidney and liver was noted. Presence of rickettsemia in mice was confirmed by the growth of O. tsutsugamushi in the L929 cells when inoculated with blood from infected mice. O. tsutsugamushi was also cultured from the peritoneal exudates of the infected mice. However, DNA of O. tsutsugamushi was only detected in the peritoneal exudates (by PCR) and blood (by cell culture) and not from other tissue samples.
    Matched MeSH terms: Orientia tsutsugamushi/pathogenicity*
  12. Rajahram GS, Barber BE, William T, Grigg MJ, Menon J, Yeo TW, et al.
    Emerg Infect Dis, 2016 Jan;22(1):41-8.
    PMID: 26690736 DOI: 10.3201/eid2201.151305
    Deaths from Plasmodium knowlesi malaria have been linked to delayed parenteral treatment. In Malaysia, early intravenous artesunate is now recommended for all severe malaria cases. We describe P. knowlesi fatalities in Sabah, Malaysia, during 2012-2014 and report species-specific fatality rates based on 2010-2014 case notifications. Sixteen malaria-associated deaths (caused by PCR-confirmed P. knowlesi [7], P. falciparum [7], and P. vivax [1] and microscopy-diagnosed "P. malariae" [1]) were reported during 2012-2014. Six patients with severe P. knowlesi malaria received intravenous artesunate at hospital admission. For persons ≥15 years of age, overall fatality rates during 2010-2014 were 3.4, 4.2, and 1.0 deaths/1,000 P. knowlesi, P. falciparum, and P. vivax notifications, respectively; P. knowlesi-associated fatality rates fell from 9.2 to 1.6 deaths/1,000 notifications. No P. knowlesi-associated deaths occurred among children, despite 373 notified cases. Although P. knowlesi malaria incidence is rising, the notification-fatality rate has decreased, likely due to improved use of intravenous artesunate.
    Matched MeSH terms: Plasmodium knowlesi/pathogenicity*
  13. Nevame AYM, Xia L, Nchongboh CG, Hasan MM, Alam MA, Yongbo L, et al.
    Biomed Res Int, 2018;2018:8120281.
    PMID: 30105248 DOI: 10.1155/2018/8120281
    Tomato yellow leaf curl virus (TYLCV) responsible for tomato yellow leaf curl disease (TYLCD) causes a substantial decrease in tomato (Solanum lycopersicum L.) yield worldwide. The use of resistant variety as a sustainable management strategy has been advocated. Tremendous progress has been made in genetically characterizing the resistance genes (R gene) in tomato. Breeding tomato for TYLCV resistance has been based mostly on Ty-3 as a race-specific resistance gene by introgression originating from wild tomato species relatives. Improvement or development of a cultivar is achievable through the use of marker-assisted selection (MAS). Therefore, precise and easy use of gene-targeted markers would be of significant importance for selection in breeding programs. The present study was undertaken to develop a new marker based on Ty-3 gene sequence that can be used for MAS in TYLCV resistant tomato breeding program. The new developed marker was named ACY. The reliability and accuracy of ACY were evaluated against those of Ty-3 linked marker P6-25 through screening of commercial resistant and susceptible tomato hybrids, and genetic segregation using F2 population derived from a commercial resistant hybrid AG208. With the use of bioinformatics and DNA sequencing analysis tools, deletion of 10 nucleotides was observed in Ty-3 gene sequence for susceptible tomato variety. ACY is a co-dominant indel-based marker that produced clear and strong polymorphic band patterns for resistant plant distinguishing it from its susceptible counterpart. The obtained result correlates with 3:1 segregation ratio of single resistant dominant gene inheritance, which depicted ACY as gene-tag functional marker. This marker is currently in use for screening 968 hybrids varieties and one thousand breeding lines of tomato varieties stocked in Jiangsu Green Port Modern Agriculture Development Company (Green Port). So far, ACY has been used to identify 56 hybrids and 51 breeding lines. These newly detected breeding lines were regarded as potential source of resistance for tomato breeding. This work exploited the sequence of Ty-3 and subsequently contributed to the development of molecular marker ACY to aid phenotypic selection. We thus recommend this marker to breeders, which is suitable for marker-assisted selection in tomato.
    Matched MeSH terms: Begomovirus/pathogenicity*
  14. Hameed K, Angelone-Alasaad S, Din JU, Nawaz MA, Rossi L
    Parasit Vectors, 2016 07 19;9(1):402.
    PMID: 27435176 DOI: 10.1186/s13071-016-1685-0
    Although neglected, the mite Sarcoptes scabiei is an unpredictable emerging parasite, threatening human and animal health globally. In this paper we report the first fatal outbreak of sarcoptic mange in the endangered Himalayan lynx (Lynx lynx isabellinus) from Pakistan. A 10-year-old male Himalayan lynx was found in a miserable condition with severe crusted lesions in Chitral District, and immediately died. Post-mortem examination determined high S. scabiei density (1309 mites/cm(2) skin). It is most probably a genuine emergence, resulting from a new incidence due to the host-taxon derived or prey-to-predator cross-infestation hypotheses, and less probable to be apparent emergence resulting from increased infection in the Himalayan lynx population. This is an alarming situation for the conservation of this already threatened population, which demands surveillance for early detection and eventually rescue and treatment of the affected Himalayan lynx.
    Matched MeSH terms: Sarcoptes scabiei/pathogenicity*
  15. Weaver SC, Reisen WK
    Antiviral Res, 2010 Feb;85(2):328-45.
    PMID: 19857523 DOI: 10.1016/j.antiviral.2009.10.008
    Arthropod-borne viruses (arboviruses) are important causes of human disease nearly worldwide. All arboviruses circulate among wild animals, and many cause disease after spillover transmission to humans and agriculturally important domestic animals that are incidental or dead-end hosts. Viruses such as dengue (DENV) and chikungunya (CHIKV) that have lost the requirement for enzootic amplification now produce extensive epidemics in tropical urban centers. Many arboviruses recently have increased in importance as human and veterinary pathogens using a variety of mechanisms. Beginning in 1999, West Nile virus (WNV) underwent a dramatic geographic expansion into the Americas. High amplification associated with avian virulence coupled with adaptation for replication at higher temperatures in mosquito vectors, has caused the largest epidemic of arboviral encephalitis ever reported in the Americas. Japanese encephalitis virus (JEV), the most frequent arboviral cause of encephalitis worldwide, has spread throughout most of Asia and as far south as Australia from its putative origin in Indonesia and Malaysia. JEV has caused major epidemics as it invaded new areas, often enabled by rice culture and amplification in domesticated swine. Rift Valley fever virus (RVFV), another arbovirus that infects humans after amplification in domesticated animals, undergoes epizootic transmission during wet years following droughts. Warming of the Indian Ocean, linked to the El Niño-Southern Oscillation in the Pacific, leads to heavy rainfall in east Africa inundating surface pools and vertically infected mosquito eggs laid during previous seasons. Like WNV, JEV and RVFV could become epizootic and epidemic in the Americas if introduced unintentionally via commerce or intentionally for nefarious purposes. Climate warming also could facilitate the expansion of the distributions of many arboviruses, as documented for bluetongue viruses (BTV), major pathogens of ruminants. BTV, especially BTV-8, invaded Europe after climate warming and enabled the major midge vector to expand is distribution northward into southern Europe, extending the transmission season and vectorial capacity of local midge species. Perhaps the greatest health risk of arboviral emergence comes from extensive tropical urbanization and the colonization of this expanding habitat by the highly anthropophilic (attracted to humans) mosquito, Aedes aegypti. These factors led to the emergence of permanent endemic cycles of urban DENV and CHIKV, as well as seasonal interhuman transmission of yellow fever virus. The recent invasion into the Americas, Europe and Africa by Aedes albopictus, an important CHIKV and secondary DENV vector, could enhance urban transmission of these viruses in tropical as well as temperate regions. The minimal requirements for sustained endemic arbovirus transmission, adequate human viremia and vector competence of Ae. aegypti and/or Ae. albopictus, may be met by two other viruses with the potential to become major human pathogens: Venezuelan equine encephalitis virus, already an important cause of neurological disease in humans and equids throughout the Americas, and Mayaro virus, a close relative of CHIKV that produces a comparably debilitating arthralgic disease in South America. Further research is needed to understand the potential of these and other arboviruses to emerge in the future, invade new geographic areas, and become important public and veterinary health problems.
    Matched MeSH terms: Arboviruses/pathogenicity*
  16. Chehri K, Salleh B, Yli-Mattila T, Soleimani MJ, Yousefi AR
    Pak J Biol Sci, 2010 Dec 15;13(24):1178-86.
    PMID: 21313898
    Fusarium is one of the most important pathogenic and toxigenic fungi widely distributed all over the world, including Iran. Fusarium species are found frequently in stored agriculture products especially wheat. The objective of this study was to identify Fusarium species associated with stored wheat seeds and their pathogenicity on root and head of wheat in Kermanshah, the leading province in wheat production in Iran. In this survey 75 seed samples of stored wheat were collected from 10 different regions during 2006-2008 and tested for the presence of Fusarium. Fusarium spp. were found in 51 (68%) of 75 samples. A total of 580 Fusarium strains were isolated, identified and preserved. All these strains belong to 20 Fusarium spp. according to morphological characters. Each conidial suspension of selected strains representing all species was evaluated for their pathogenicity on roots and spikes of healthy wheat var. Fallat in the greenhouse. F. graminearum, F. crookwellense, F. trichothecioides, F. culmorum and F. verticillioides were the most pathogenic to wheat's head. Foot rot assessment revealed that F. pseudograminearum and F. culmorum were the most damaging species. Of the Fusarium isolates, F. graminearum was the most prevalent followed by F. verticillioides and F. proliferatum. This is the first comprehensive report on identity and distribution of Fusarium spp. from stored wheat seeds in Iran while F. nelsonii was reported for the first time from wheat seeds in Iran.
    Matched MeSH terms: Fusarium/pathogenicity
  17. De Silva JR, Ching XT, Lau YL
    Trop Biomed, 2020 Jun 01;37(2):324-332.
    PMID: 33612802
    The focus of the current study was to disrupt the Toxo 5699 gene via CRISPR/Cas9 to evaluate the effects of gene disruption on the parasite lytic cycle. In the present work, a single plasmid expressing both the guide RNA and Cas9 nuclease together with a selectable marker of human dihydrofolate reductase (DHFR) was introduced into Toxoplasma gondii. Targeted disruption of the Toxo 5699 gene was carried out via the CRISPR/Cas9 system and confirmed by PCR, sequencing, and immunofluorescence microscopy. Disrupted and nondisrupted control parasites were allowed to invade HS27 cell monolayers and plaques were counted. The average number of plaques from three replicates per group was obtained between the disrupted and non-disrupted T. gondii RH strain and was compared using a onetailed t-test. It was observed that there was a significant decrease in number and size of plaque formation in the Toxo 5699 gene disrupted parasite line. This is an indication that the Toxo 5699 gene may play a role in the lytic cycle of the parasite, particularly during the replication phase and thus would be a novel target for disruption or silencing. The Toxo 5699 gene presented in the current work is an important part of the T. gondii lytic cycle, therefore meriting further inquiry into its potential as a target for further genetic-silencing or disruption studies.
    Matched MeSH terms: Toxoplasma/pathogenicity*
  18. Ramalingam S, Nurulhuda A, Bee LH
    PMID: 7444582
    A case of urogenital myiasis caused by Chrysomya bezziana (Diptera: Calliphoridae) was diagnosed in a 76-year old patient who had carcinoma of the rectum. A total of 35 larvae were obtained from ulcers near the external genitalia and urethra opening. Larvae pupated within 1 to 2 days and 6 days later emerged as adult males. These were identified as Chrysomya bezziana. Female flies possibly attracted by the fetid odour, laid eggs in the existing lesions in the urogenital area, the larvae invading and feeding on living tissue. Lack of personal hygiene was the contributing factor for the cause of urogenital myiasis in this patient.
    Matched MeSH terms: Diptera/pathogenicity*
  19. Ooi CH, Phang WK, Kent Liew JW, Lau YL
    Am J Trop Med Hyg, 2021 Mar 22;104(5):1814-1819.
    PMID: 33755585 DOI: 10.4269/ajtmh.20-1304
    Zoonotic knowlesi malaria has replaced human malaria as the most prevalent malaria disease in Malaysia. The persistence of knowlesi malaria in high-risk transmission areas or hotspots can be discouraging to existing malaria elimination efforts. In this study, retrospective data of laboratory-confirmed knowlesi malaria cases were obtained from the Sarawak Health Department to investigate the spatiotemporal patterns and clustering of knowlesi malaria in the state of Sarawak from 2008 to 2017. Purely spatial, purely temporal, and spatiotemporal analyses were performed using SaTScan software to define clustering of knowlesi malaria incidence. Purely spatial and spatiotemporal analyses indicated most likely clusters of knowlesi malaria in the northern region of Sarawak, along the Sarawak-Kalimantan border, and the inner central region of Sarawak between 2008 and 2017. Temporal cluster was detected between September 2016 and December 2017. This study provides evidence of the existence of statistically significant Plasmodium knowlesi malaria clusters in Sarawak, Malaysia. The analysis approach applied in this study showed potential in establishing surveillance and risk management system for knowlesi malaria control as Malaysia approaches human malaria elimination.
    Matched MeSH terms: Plasmodium knowlesi/pathogenicity*
  20. Warren M, Cheong WH, Fredericks HK, Coatney GR
    Am J Trop Med Hyg, 1970 May;19(3):383-93.
    PMID: 4392806
    Matched MeSH terms: Plasmodium/pathogenicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links