Displaying publications 61 - 80 of 2471 in total

Abstract:
Sort:
  1. Sorour SS, Abou Asa S, Elhawary NM, Ghazy EW, Abd El Latif A, El-Abasy MA, et al.
    Trop Biomed, 2018 Dec 01;35(4):926-943.
    PMID: 33601842
    Coccidiosis is one of the most dangerous diseases that affect poultry, resulting in worldwide economic losses. Plant extracts and essential oils have been used as potential alternatives for chemotherapeutics, because they don't have the negative consequence of creating tissue residue and drug resistance. Therefore, this study had been conducted to determine the efficacy of artemisinin liquid extract, cinnamon essential oil and clove essential oil against Eimeria stiedae in rabbits. Sixty New Zealand white rabbits were divided into six equal groups, where group 1 and group 2 represented the negative and the positive controls, respectively, and groups 3-6 were infected with Eimeria stiedae and received 15 ppm toltrazuril, 200 ppm artemisinin, 100 mg/kg cinnamon oil, and 100 mg/kg clove oil, respectively. The results showed that artemisinin had a significant beneficial role in protection against hepatic coccidiosis: it mitigated the clinical symptoms, reduced the mortality rates, improved body weight and feed conversion, decreased the oocyst output, prevented oxidative stress, improved biochemical parameters, and decreased the lesion formation. Moreover, it has been found that cinnamon and clove essential oils induced partial protection against hepatic coccidiosis. Our findings suggested that artemisinin liquid extract and cinnamon and clove essential oils could be used for protection against hepatic coccidiosis. However, further investigations are needed in order to elucidate the active components, optimal doses, and mode of action of these extracts and essential oils before their clinical applications.
    Matched MeSH terms: Plant Extracts
  2. Jissin M, Vani C
    Trop Biomed, 2020 Sep 01;37(3):791-802.
    PMID: 33612792 DOI: 10.47665/tb.37.3.791
    To characterize the production and larvicidal activity of Xenorhabdus stockiae KUT6 Petroleum ether extracts from Luria Broth and induced Quorum sensing medium containing N-3- oxododecanoyl Homoserine Lactone inducer against dengue vector Aedes aegypti. The Galleria mellonella larvae were reared for the isolation of Steinernema saimkayi symbiont Xenorhabdus stockiae KUT6 from Cucumber field soil sample in NBTA. Then for the extraction of compounds the KUT6 strains were cultured in Luria Broth and Quorum Sensing optimized media using N-3-oxododecanoyl homoserine lactone inducer. The larvicidal activity of Xenorhabdus stockiae KUT6 of petroleum ether extracts were bioassayed against 4th instar Aedes aegypti dengue vector. The maximum rate of mortality were recorded of the samples A-24h, B-48h, C-72h, A1-24h, B1-48h, C1-72h at different concentrations 50 µg/ml, 100 µg/ml and 150 µg/ml respectively for 24h to 72h of exposure treatment. The morphological characteristics of Xenorhabdus stockiae KUT6 in NBTA were red core colonies with blue background surrounded by zone of inhibition. After 24h exposure maximum rate of 100% mortality of Aedes aegypti 4th instar larvae was attained when treated with sample C1-72h 50 µg/ml of the petroleum ether extracts of quorum sensed medium whereas the sample C 72h petroleum ether extracts of KUT6 cultured in Luria broth recorded 100% mortality at 150 µg on 24h exposure indicates enhancement in the product yield. The study assures the use of Xenorhabdus stockiae KUT6 petroleum ether extracts as biocontrol agent could be beneficial for the control of dengue vectors.
    Matched MeSH terms: Plant Extracts
  3. Fathy SA, Mohamed MR, Emam MA, Mohamed SS, Ghareeb DA, Elgohary SA, et al.
    Trop Biomed, 2019 Dec 01;36(4):972-986.
    PMID: 33597467
    Candida is the most frequent common causes of invasive fungal infections and associated with high morbidity and mortality. Most of available antifungal agents have side effects. This opened up new avenues to investigate the antifungal efficacy of active extracts from marine algae. So the aim of this study was to evaluate the protective and the curative effect of Ulva fasciata extract against an invasive candidiasis in mice and to study its underlying mechanism. The active ingredients of Ulva fasciata extract were evaluated using HPLC and GC/MS. Fifty mice were included in current work, and the level of inflammatory markers; Interleukin (IL)-4, IL-12, Interferon-gamma (IFN-γ) and Tumor necrosis factor-alpha (TNF-α) were determined using ELISA kits. Hematological, biochemical and oxidative stress parameters were determined using commercial kits. Moreover, the histopathological examinations were carried on liver, kidney and spleen for all groups. The results obtained showed that treatment with U. fasciata either before or after Candida infection significantly improved the hematological, biochemical alterations and antioxidant status caused by this infection. Furthermore, the U. fasciata reduced histopathological changes induced by Candida as well as it could increase the expression of IL-12 and IFN-γ while minimized the expression of TNF-α and IL-4 in all infected mice compared to infected untreated mice. These data propose that U. fasciata can ameliorate inflammatory reactions related to Candida albicans cytotoxicity via its ability to augment cellular antioxidant defenses by its active compounds.
    Matched MeSH terms: Plant Extracts/pharmacology*
  4. Al Nasr IS
    Trop Biomed, 2020 Mar 01;37(1):15-23.
    PMID: 33612714
    The organisms of the genus Leishmania are flagellated protozoan parasites and are the causative agents of leishmaniasis. This disease is a major health problem, especially in tropical countries. Currently, cutaneous leishmaniasis is treated by chemotherapy using pentavalent antimonials, but these drugs have serious organo-toxicity, drug resistance on several occasions, and low efficiency in controlling the infection. The present work is carried out to evaluate the in vitro antileishmanial activity of methanolic extracts and phytochemical fractions of two plants ethnobotanically used against leishmaniasis and skin infection, Calotropis procera and Rhazya stricta leaves against Leishmania major promastigote and amastigote stages and cytotoxicity against the Vero cell line. The leaves of C. procera and R. stricta were extracted with methanol and fractionated by petroleum ether, chloroform, ethyl acetate, n-butanol, and water. The methanolic extracts of the leaves of C. procera and R. stricta exhibited antileishmanial activity against L. major promastigotes with IC50 values of 66.8 and 42.4 µg mL-1, respectively. While their CC50 2.3 and 298 µg mL-1 and their SI 0.03 and 7.03 respectively. However, the fractionations of the methanolic extract of C. procera leaves revealed antiparasitic activity against both L. major promastigote and amastigote stages in vitro, which significantly increased with polarity with the exception of n-butanol. Hence the best activity was revealed by the water fraction (IC50 of 26.3 and 29.0 µg mL-1) for the two stages. In conclusion, further phytochemical investigation should be performed for the C. procera water extract in terms of antileishmanial active ingredient isolation that may enhance the possibility of avoiding toxic substances and overcome the low SI (1.1 and 1.01).
    Matched MeSH terms: Plant Extracts/pharmacology
  5. Shahzad MI, Anwar S, Ashraf H, Manzoor A, Naseer M, Rani U, et al.
    Trop Biomed, 2020 Dec 01;37(4):1129-1140.
    PMID: 33612765 DOI: 10.47665/tb.37.4.1129
    Herbal medicines are becoming more popular and acceptable day by day due to their effectiveness, limited side effects, and cost-effectiveness. Cholistani plants are reported as a rich source of antibacterial, antifungal, antiprotozoal, antioxidant, and anticancer agents. The current study has evaluated antiviral potential of selected Cholistani plants. The whole plants were collected, ground and used in extract formation with n-hexane, ethyl acetate and n-butanol. All the extracts were concentrated by using a rotary evaporator and concentrate was finally dissolved in an appropriate vol of the same solvent. All of the extracts were tested for their antiviral potential by using 9-11 days old chick embryonated eggs. Each extract was tested against the Avian Influenza virus H9N2 strain (AIV), New Castle Disease virus Lasoota strain (NDV), Infectious bronchitis virus (IBV) and an Infectious bursal disease virus (IBDV). Hemagglutination test (HA) and Indirect Hemagglutination (IHA) tests were performed for different viruses. The overall order of the antiviral potential of Cholistani plants against viruses was NDV>IBV>IBDV>AIV. In terms of antiviral activity from extracts, the order of activity was n-butanol>ethyl acetate>n-hexane. The medicinal plants Achyranthes aspera, Neuroda procumbens, Panicum antidotale, Ochthochloa compressa and Suaeda fruticose were very effective against all four poultry viruses through their extracts. The low IC50 values of these extracts confirm the high antiviral potential against these viruses. It is worth to mention that Achyranthes aspera was found positive against IBDV through all its extracts which overcome the problem of unavailability of any known drug against IBDV. In short, the study proved that Cholistani plants are rich source of antiviral agent and their extracts can be used as good source of antiviral drugs both in crude and in purified form.
    Matched MeSH terms: Plant Extracts/pharmacology*
  6. Mohd Ridzuan MA, Sow A, Noor Rain A, Mohd Ilham A, Zakiah I
    Trop Biomed, 2007 Jun;24(1):111-8.
    PMID: 17568384 MyJurnal
    Eurycoma longifolia, locally known as 'Tongkat Ali' is a popular local medicinal plant that possess a lot of medicinal properties as claimed traditionally, especially in the treatment of malaria. The claims have been proven scientifically on isolated compounds from the plant. The present study is to investigate the anti malaria properties of Eurycoma longifolia standardized extract (root) (TA164) alone and in combination with artemisinin in vivo. Combination treatment of the standardized extract (TA164) with artemisinin suppressed P. yoelii infection in the experimental mice. The 4 day suppressive test showed that TA164 suppressed the parasitemia of P. yoelii-infected mice as dose dependent manner (10, 30 and 60 mg/kg BW) by oral and subcutaneous treatment. By oral administration, combination of TA164 at 10, 30 and 60 mg/kg BW each with artemisinin respectively showed a significant increase in the parasitemia suppression to 63, 67 and 80 percent as compared to artemisinin single treatment (31%). Using subcutaneous administration, at 10 mg/kg BW of TA164 in combination with 1.7 mg/kg BW of artemisinin gave a suppression of 80% of infection. This study showed that combination treatment of TA164 with artemisinin gives a promising potential anti malaria candidate using both oral and subcutaneous route, the later being the most potent.
    Matched MeSH terms: Plant Extracts/administration & dosage*; Plant Extracts/pharmacology*; Plant Extracts/chemistry
  7. Safar HF, Ali AH, Zakaria NH, Kamal N, Hassan NI, Agustar HK, et al.
    Trop Biomed, 2022 Dec 01;39(4):552-558.
    PMID: 36602215 DOI: 10.47665/tb.39.4.011
    Diplazium esculentum is an edible fern commonly consumed by the local community in Malaysia either as food or medicine. Isolation work on the ethyl acetate extract of the stem of D. esculentum resulted in the purification of two steroids, subsequently identified as stigmasterol (compound 1) and ergosterol5,8-endoperoxide (compound 2). Upon further testing, compound 2 displayed strong inhibitory activity against the Plasmodium falciparum 3D7 (chloroquine-sensitive) strain, with an IC50 of 4.27±1.15 µM, while compound 1 was inactive. In silico data revealed that compound 2 showed good binding affinity to P. falciparum-Sarco endoplasmic reticulum calcium-dependent ATPase (PfATP6); however, compound 1 did not show an antiplasmodial effect due to the lack of a peroxide moiety in the chemical structure. Our data suggested that the antiplasmodial activity of compound 2 from D. esculentum might be due to the inhibition of PfATP6, which resulted in both in vitro and in silico inhibitory properties.
    Matched MeSH terms: Plant Extracts/pharmacology
  8. Khaldi R, Rehimi N, Kharoubi R, Soltani N
    Trop Biomed, 2022 Dec 01;39(4):531-538.
    PMID: 36602212 DOI: 10.47665/tb.39.4.008
    Melia azedarach L. (Meliaceae) is a botanical species with focal point of global research for its biological properties. The Melia azedarach tree is distinguished by its rapid growth, its adaptation to different temperate zones, as well as its insecticidal properties. All this made us think of exploiting it in biological control against different stages of mosquitoes. To this end, we aim, through the present work, to evaluate the effectiveness of Melia azedarach extracts against Culex pipiens mosquito. More specifically, our study focuses on determining the chemical composition of Melia almond oil, as well as the larvicidal, ovicidal and repellent activities on Culex pipiens L. mosquito as well as the activities of acetylcholinesterase (AChE) and glutathione-S-transferase (GST). Almond oil was extracted by a Soxhlet and subjected to gas chromatography-mass spectrometry (GC/MS). The yield was found to be 35.17%. The chemical composition revealed the presence of various phytoconstituents. A total of 7 compounds were identified, the main ones being 9,11-Octadecadienoic acid, methyl ester, (E,E)- (79.32%), 9-octadecenoic acid (Z)-, methyl ester (13.24%), hexadecanoic acid and methyl ester (3.69%). The larvicidal bioassays were performed according to the protocol recommended by the World Health Organization with concentrations varying from 20 to 80 mg/L depending on the exposure time (24, 48 and 72 hours). The almond oil exhibited remarkable larvicidal activity against fourth instar larvae and the lethal concentrations were determined (LC25= 23.70 mg/L, LC50=35.49 mg/L, LC90=79.61 mg/L). The results also showed that the oil caused an ovicidal activity with a significant effect on egg hatch. The recorded hatching percentages were respectively 88.79% and 72.40% for the LC25 and LC50, and this compared to the control series. Moreover, this oil exhibited significant repellency against adult mosquitoes. Furthermore, the enzymatic measurements performed on LC50 and LC90 treated larvae revealed a neurotoxic activity and a stimulation of the detoxification system as evidenced, respectively, by an inhibition of AChE and induction in GST activity. Overall, our data proved that Melia azedarach almond oil could be considered as a potent biorational alternative to synthetic insecticides for mosquito control.
    Matched MeSH terms: Plant Extracts/pharmacology
  9. Delgado-Núñez EJ, López-Arellano ME, Olmedo-Juárez A, Díaz-Nájera JF, Ocampo-Gutiérrez AY, Mendoza-de Gives P
    Trop Biomed, 2023 Mar 01;40(1):108-114.
    PMID: 37356010 DOI: 10.47665/tb.40.1.017
    Haemonchus contortus (Hc) is a hematophagous parasite affecting the health and productivity of flocks. The administration of chemical anthelmintic drugs (AH) is the common method of deworming; however, generates resistance in the parasites to AH and it is a public health risk due to drug residues in milk, meat and sub-products. Natural compounds from plants are explored to diminish this parasitosis, improving their health and productivity, without the negative effects of AH. Ipomoea genus is a group of climbing plants belonging to the Convulvulaceae family possessing perennial leaves and tuberous roots. Medicinal properties has been attributed to this plant including nutritional agents, emetics, diuretics, diaphoretics, purgatives and pesticides. The objective of this study was assessing the in vitro nematocidal activity of a hydroalcoholic extract (HA-E) obtained from Ipomoea pauciflora (Cazahuate) flowers against Hc infective larvae (L3) and to identify its phytochemical profile (PhC-P). The assay was carried out using microtiter plates (MTP). Four HA-E concentrations were assessed and Ivermectin and distilled water were used as positive and negative control groups, respectively. Approximately 100 Hc L3 were deposited in each well (n=12) and incubated at 25-35°C for 7 days. Data were analyzed using ANOVA and a General Linear Model (GLM) followed by Tukey test (P<0.05). The treatments showing a concentration-dependent effect (CDE) were analyzed to identify their 50% and 90% lethal concentrations (CL50, 90) via a Probit Analysis. The highest mortality was observed at 50 mg/mL (82.64 ± 0.71%) and the lowest at 6.25 mg/mL (56.46 ± 2.49%), showing a CDE with increasing mortality from 6.25 to 50 mg/mL. The PhC-P revealed the presence of alkaloids, coumarins, flavonoids, tannins and triterpenes/ sterols. A HA-E from flowers of I. pauciflora will be considered to assess its potential use in the control of haemonchosis in small ruminants.
    Matched MeSH terms: Plant Extracts/pharmacology
  10. Al-Madhagi WM, Sharhan O, Jadan B, Hashim NM, Awadh N, Othman R
    Trop Biomed, 2023 Dec 01;40(4):486-496.
    PMID: 38308837 DOI: 10.47665/tb.40.4.015
    Much of the new research and investigation in pharmacy sciences are concerned with developing therapeutic agents, and identifying and finding new drugs with their chemical structure to treat different human diseases such as infectious diseases from natural products. Therefore, the present findings relate to isolating five new compounds the dichloromethane extract of Peperomia blanda (Jacq.) Kunth grown on Socotra Island, Yemen. two new secolignans; which have been proposed as peperomin I & J. These compounds were isolated together with the other two polyketides presented as surinone D and dindygulerione F. The chemical structures were elucidated and confirmed with nuclear magnetic resonance (NMR) and liquid chromatography-mass spectroscopy (LCMS) analysis. These compounds were first isolated and reported from this plant. These new compounds' antimicrobial activity has been evaluated, and minimum inhibitory concentration has been recorded in the range of 125-250 µg/mL. The pharmacotherapeutic spectrum of compounds was predicated using PASS software which showed potential activity.
    Matched MeSH terms: Plant Extracts/pharmacology
  11. Khan TA, Al Nasr IS, Mujawah AH, Koko WS
    Trop Biomed, 2021 Mar 01;38(1):135-141.
    PMID: 33797536 DOI: 10.47665/tb.38.1.023
    Leishmaniasis and toxoplasmosis are parasitic protozoal diseases that pose serious health concerns, especially for immunocompromised people. Leishmania major and Toxoplasma gondii are endemic in Saudi Arabia and are particularly common in the Qassim Region. The present work was conducted to evaluate the in vitro antileishmanial and antitoxoplasmal activity of methanolic extracts and phytochemical fractions from two plants, Euphorpia retusa and Pulicaria undulata, which are ethnobotanical agents used to treat parasitic infection. Whole E. retusa and P. undulata plants were extracted with methanol and fractionated using petroleum ether, chloroform, ethyl acetate, n-butanol, and water and then were tested in vitro against L. major promastigote and the amastigote stages of T. gondii; the cytotoxicity of the extracts was tested against Vero cell line. The methanolic extracts of E. retusa and P. undulata exhibited promising antitoxoplasmal activity against T. gondii with EC50 values 5.6 and 12.7 μg mL-1, respectively. The chloroform fraction of P. undulata was the most potent, exhibiting an EC50 of 1.4 μg mL-1 and SI value of 12.1. It was also the most active fraction against both L. major promastigotes and amastigotes, exhibiting an EC50 of 3.9 and 3.8 μg mL-1 and SI values 4.4 and 4.5, respectively. The chloroform fraction from P. undulata is a very good candidate for the isolation of active antitoxoplasmal and antileishmanial ingredients; therefore, further phytochemical analysis for active compound isolation is highly recommended.
    Matched MeSH terms: Plant Extracts/pharmacology*
  12. Rusli RNM, Naomi R, Yazid MD, Embong H, Perumal K, Othman F, et al.
    Toxins (Basel), 2023 Feb 03;15(2).
    PMID: 36828439 DOI: 10.3390/toxins15020125
    The Bouea macrophylla fruit is native to Malaysia and is known for its many beneficial effects on one's health. Probiotics are well-known for their roles as anti-inflammatory, antioxidant, and anti-tumour properties due to their widespread use. As a result, the purpose of this study was to incorporate the ethanolic extract of Bouea macrophylla into yoghurt and then assess the rodents for any toxicological effects. According to the findings of the nutritional analysis, each 100 mL serving of the newly formulated yoghurt contains 3.29 g of fat, 5.79 g of carbohydrates, 2.92 g of total protein, and 2.72 g of sugar. The ability of the newly developed yoghurt to stimulate the growth of Lactobacilli was demonstrated by the fact that the peak intensity of Lactobacillus species was measured at 1.2 × 106 CFU/g while the titratable acidity of the lactic acid was measured at 0.599 CFU/g. In order to carry out the toxicological evaluation, forty-eight male Sprague Dawley (SD) rats were utilized. Oral administration of single doses of 2000 mg/kg over the course of 14 days was used for the study of acute toxicity. Subacute toxicity was studied by giving animals Bouea macrophylla yoghurt (BMY) at repeated doses of 50, 250, 500, and 1000 mg/kg/day over a period of 28 days, while the control group was given normal saline. The results of the acute toxicity test revealed that rats treated with increasing doses up to a maximum of 2000 mg/kg exhibited no signs of toxicity. After an additional 14 days without treatment, acute toxicity of a single dose (2000 mg/kg) of BMY did not show any treatment-related toxicity in any of the rats that were observed. According to the data from the subacute toxicity study, there were no differences between the treated groups and the control groups in terms of food and water intake, body weight, plasma biochemistry (AST, ALT, ALP, and creatinine), haematological products, or organ weights. The architecture of the liver, heart, and kidney were all found to be normal upon histological examination. This indicates that oral consumption of BMY did not result in any negative effects being manifested in the rodents.
    Matched MeSH terms: Plant Extracts*
  13. Mustafa MR
    Toxicon, 1993 Jan;31(1):67-74.
    PMID: 8446965
    The effect of the total glysosidic extract of the plant Sarcolobus globosus was investigated on the contractions of the smooth muscle of the guinea-pig ileal longitudinal muscle and taenia coli. In the ileal longitudinal muscle, addition of the extract inhibited the electrical field-stimulated twitches. Similarly to verapamil, it also reduced the contractions of the muscle to acetylcholine, histamine and KCl. However, only the tonic contraction to KCl was reversed by increasing the extracellular calcium concentration. In the taenia coli, lower concentrations of both the extract and verapamil induced a parallel displacement of the dose-response curves to calcium (0.30-30 mM). Addition of the extract also dose-dependently inhibited the KCl-induced contraction of the taenia coli. Increasing the calcium concentration increased the IC50 values of the extract. The result suggests that the inhibitory effect of the Sarcolobus globosus extract on the smooth muscle, like verapamil, is mainly due to inhibition of calcium influx.
    Matched MeSH terms: Plant Extracts/pharmacology*
  14. Mustafa MR, Hadi AH
    Toxicon, 1990;28(10):1237-9.
    PMID: 2264070
    Crude glycoside extracts from the plant, Sarcolobus globosus, were tested on the rat phrenic nerve-diaphragm, chick biventer cervicis and frog rectus abdominis preparations. Nerve-stimulated twitches were inhibited by the extract. The muscle paralysis was not similar to that by curare-like blockers as it was not reversed by neostigmine or by a tetanus. Although contractures to acetylcholine or carbachol were not affected by 0.6 mg/ml of the extract, higher concentration of the extracts (3 mg/ml) depressed the log dose-response curve of acetylcholine and carbachol. The results suggest that the neuromuscular blocking effect of the extracts is either dose-dependent or due to a mixture of toxins with presynaptic or postsynaptic actions.
    Matched MeSH terms: Plant Extracts/pharmacology*
  15. Yeoh SL, Choong PS, Zakaria R, Kamaruzaman NA, Md Rashid S, Razali MF, et al.
    Toxicon, 2024 Jan;237:107557.
    PMID: 38072318 DOI: 10.1016/j.toxicon.2023.107557
    Derris trifoliata is mainly found in mangrove area in tropical regions and the plant extract is traditionally used for fishing by poisoning. This is the first case report of rotenone poisoning in a child from ingesting Derris trifoliata seed. The child developed altered consciousness, vomiting, hypotension, metabolic acidosis, and acute kidney injury. Species identification of this case requires the collaborative efforts of various agencies. She survived from the poisoning with no neurological sequelae.
    Matched MeSH terms: Plant Extracts
  16. Manaharan T, Chakravarthi S, Radhakrishnan AK, Palanisamy UD
    Toxicol Rep, 2014;1:718-725.
    PMID: 28962285 DOI: 10.1016/j.toxrep.2014.09.006
    In this study, the acute and subchronic toxicity effect of the Syzygium aqueum leaf extract (SA) was evaluated. For the acute toxicity study, a single dose of 2000 mg/kg of the SA was given by oral-gavage to male Sprague-Dawley (SD) rats. The rats were observed for mortality and toxicity signs for 14 days. In the subchronic toxicity study the SA was administered orally at doses of 50, 100, and 200 mg/kg per day for 28 days to male SD rats. The animals were sacrificed at the end of the experiment. The parameters measured including food and water intake, body weight, absolute and relative organ weight, blood biochemical tests and histopathology observation. In both the acute and subchronic toxicity studies, SA did not show any visible signs of toxicity. There were also no significant differences between the control and SA treated rats in terms of their food and water intake, body weight, absolute and relative organ weight, biochemical parameters or gross and microscopic appearance of the organs. There were no acute or subchronic toxicity observed and our results indicate that this extract could be devoid of any toxic risk. This is the first in vivo study reported the safety and toxicity of SA.
    Matched MeSH terms: Plant Extracts
  17. Koriem KM, Arbid MS, El-Gendy NF
    Toxicol. Mech. Methods, 2010 Nov;20(9):579-86.
    PMID: 20883155 DOI: 10.3109/15376516.2010.518171
    The protective role of Tropaelum majus (T.majus) methyl alcohol extract and vitamin E in the case of toxic effect induced by diethyl maleate was evaluated. Forty-two male albino rats were divided into seven groups of six rats each for 15 days. Group 1: normal control group. Group 2: taken daily oral dose of paraffin oil (0.25ml/100g b.wt rat). Group 3: received daily oral dose of vitamin E (100mg/kg b.wt rat). Group 4: taken daily oral dose of 10% of the LD50 of T.majus methyl alcohol extract. Groups 5–7: injected intra-peritoneally with diethyl maleate (5 μl/100g b.wt rat) but groups 6 and 7 received a daily oral dose of either vitamin E or 10% of the LD50 of T.majus methyl alcohol extract 1h prior to diethyl maleate injection. The present results revealed that diethyl maleate induced serum aspartate and alanine aminotransferases enzymes activities decreased in serum, but their activities in the hepatic tissue showed an increase. Glutathione and glucose-6-phosphate dehydrogenase levels showed a decrease, but thiobarbituric acid reactive substances level showed an increase in both serum and liver tissue. Serum and liver proteins decreased in serum and liver tissue. A significant decrease in blood parameters (hemoglobin, hematocrit, as well as red and white blood cells) and serum glucose occurred. Histopathological results showed that diethyl maleate induced a hoop of edema in the hepatic periportal area; while T.majus methyl alcohol extract or vitamin E prior to diethyl maleate injection shift blood and liver toxicity induced by diethyl maleate towards normal values and preserved hepatic lobular architecture. In conclusion, pre-treatment with either T.majus methyl alcohol extract or vitamin E provide protection against blood and liver toxicity induced by diethyl maleate in rats, these results were confirmed by histological examinations.
    Matched MeSH terms: Plant Extracts/pharmacology*
  18. Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH
    Toxicol In Vitro, 2020 Sep;67:104910.
    PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910
    Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
    Matched MeSH terms: Plant Extracts/chemistry
  19. Iqbal MO, Yahya EB
    Tissue Cell, 2021 Oct;72:101525.
    PMID: 33780659 DOI: 10.1016/j.tice.2021.101525
    Aminoglycoside antibiotics are widely employed clinically due to their powerful bactericidal activities, less bacterial resistance compared to beta lactam group and low cost. However, their use has been limited in recent years due to their potential induction of nephrotoxicity. Here we investigate the possibility of reversing nephrotoxicity caused by gentamicin in rat models by using ethanolic crude extract of the medicinal plant Jatropha Mollissima. Nephrotoxic male Wistar rats was obtained by gentamicin antibiotic, which then treated with two doses of J. mollissima crude extract for 3 weeks with monitoring their parameter in weekly base. Our results indicate that J. mollissima crude extract at both doses has strong protection ability against gentamicin nephrotoxicity, most of tested parameters backed to normal values after few days from the administration of the crude extract, which could be due to the antagonized the biochemical action of gentamicin on the proximal tubules of the kidney. The results of histopathologic analysis showed observable improvement in J. mollissima treated groups compared with untreated groups. Our findings suggests the J. mollissima has exceptional nephron protection potentials able to reverse the nephrotoxicity caused by gentamicin antibiotic.
    Matched MeSH terms: Plant Extracts/administration & dosage; Plant Extracts/pharmacology*
  20. Ramli NS, Ismail P, Rahmat A
    ScientificWorldJournal, 2014;2014:964731.
    PMID: 25379555 DOI: 10.1155/2014/964731
    The aim of this study was to examine the effects of extraction methods on antioxidant capacities of red dragon fruit peel and flesh. Antioxidant capacities were measured using ethylenebenzothiozoline-6-sulfonic acid (ABTS) radical cation assay and ferric reducing antioxidant power assay (FRAP). Total phenolic content (TPC) was determined using Folin-Ciocalteu reagent while quantitative determination of total flavonoid content (TFC) was conducted using aluminium trichloride colorimetric method. Betacyanin content (BC) was measured by spectrophotometer. Red dragon fruit was extracted using conventional (CV) and ultrasonic-assisted extraction (UE) technique to determine the most efficient way of extracting its antioxidant components. Results indicated that UE increased TFC, reduced the extraction yield, BC, and TPC, but exhibited the strongest scavenging activity for the peel of red dragon fruit. In contrast, UE reduced BC, TFC, and scavenging activity but increased the yield for the flesh. Nonetheless, UE slightly increases TPC in flesh. Scavenging activity and reducing power were highly correlated with phenolic and flavonoid compounds. Conversely, the scavenging activity and reducing power were weakly correlated with betacyanin content. This work gives scientific evidences for the consideration of the type of extraction techniques for the peel and flesh of red dragon fruit in applied research and food industry.
    Matched MeSH terms: Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links