Displaying publications 61 - 80 of 130 in total

Abstract:
Sort:
  1. Jackson AA
    Family Physician, 1994;6:4-6.
    Audit has improved certain aspects of management of typhoid fever detected through Klinik Perubatan Masyarakat at Hospital Universiti Sains Malaysia. We audited records of clinic patients who were blood culture positive for Salmonella typhi. For August to October 1992, we found 10 out of 31 cases (32%) were not admitted. Some of these were patients who defaulted, while some were managed as outpatients but not notified. We took action to educate the medical officers. For November 1992 - March 1993 we found 8 out of 24 cases (33%) were not admitted. Although the admission rate was no better, there was a non significant improvement in rate of notification by doctors. Defaulters were now the main problem, and so we took action to improve their follow-up, by using the clinic staff nurse. For April - August 1993, only 1 out of 16 cases (6%) was not admitted. This was a significant improvement (p=0.03)

    Study site: Klinik Perubatan Masyarakat at Hospital Universiti Sains Malaysia
    Matched MeSH terms: Salmonella typhi
  2. KishanRaj S, Sumitha S, Siventhiran B, Thiviyaa O, Sathasivam KV, Xavier R, et al.
    Mol Biol Rep, 2018 Dec;45(6):2333-2343.
    PMID: 30284142 DOI: 10.1007/s11033-018-4397-z
    Proteus mirabilis, a gram-negative bacterium of the family Enterobacteriaceae, is a leading cause of urinary tract infection (UTI) with rapid development of multi-drug resistance. Identification of small regulatory RNAs (sRNAs), which belongs to a class of RNAs that do not translate into a protein, could permit the comprehension of the regulatory roles this molecules play in mediating pathogenesis and multi-drug resistance of the organism. In this study, comparative sRNA analysis across three different members of Enterobacteriaceae (Escherichia coli, Salmonella typhi and Salmonella typhimurium) was carried out to identify the sRNA homologs in P. mirabilis. A total of 232 sRNA genes that were reported in E. coli, S. typhi and S. typhimurium were subjected to comparative analysis against P. mirabilis HI4320 genome. We report the detection of 14 sRNA candidates, conserved in the orthologous regions of P. mirabilis, that are not included in Rfam database. Northern-blot analysis was carried out for selected three sRNA candidates from the current investigation and three known sRNA from Rfam of P. mirabilis. The expression pattern of the six sRNA candidates shows that they are growth stage-dependant. To the best of our knowledge, this is the first report on the identification of sRNA candidates in P. mirabilis.
    Matched MeSH terms: Salmonella typhi/genetics; Salmonella typhimurium/genetics
  3. Faisal, G.G., Zakaria, S.M., Najmuldeen, G.F.
    MyJurnal
    ntroduction: Currently, researchers are aiming to explore herbal plants to replace synthetic drugs because herbal plants contain high active compounds and fewer side effects. Our study was done to determine the antibacterial activity of Eurycoma longifolia Jack (E. longifolia) root using ethanol based extract. Methods: Five types of pathogenic bacterial strains were used; Gram-positive (Staphylococcus aureus and Bacillus ce- reus) and Gram-negative (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa). Disc diffusion assay and Minimum Inhibitory Concentration (MIC) tests were used to determine the inhibition zone and turbidity of suspension which reflects the antibacterial activity of the extract. Results: The ethanolic extract of E. longifolia Jack root extract showed positive results against Gram-positive bacteria (S. aureus and B. cereus) and Gram- negative (S. typhi). B.cereus and S.typhi showed inhibition zone values of 11.76mm and 14.33mm at the extract concentration of 150mg/ml that were higher than the positive control values (9.00, 12.67mm) respectively. However, E. coli and P. aeruginosa did not show any inhibition by the ethanol-based extract. Conclusion: From the results we can conclude that E.Longifolia root extract possesses antibacterial activity that can be further explored to produce new medicinal products.
    Matched MeSH terms: Salmonella typhi
  4. Thong KL, Goh YL, Yasin RM, Lau MG, Passey M, Winston G, et al.
    J Clin Microbiol, 2002 Nov;40(11):4156-60.
    PMID: 12409390
    Pulsed-field gel electrophoresis (PFGE) of XbaI-digested chromosomal DNA was performed on 133 strains of Salmonella enterica serovar Typhi obtained from Papua New Guinea, with the objective of assessing the temporal variation of these strains. Fifty-two strains that were isolated in 1992 and 1994 were of one phage type, D2, and only two predominant PFGE profiles, X1 and X2, were present. Another 81 strains isolated between 1997 and 1999 have shown divergence, with four new phage types, UVS I (n = 63), UVS (n = 5), VNS (n = 4), and D1 (n = 9), and more genetic variability as evidenced by the multiple and new PFGE XbaI profiles (21 profiles; Dice coefficient, F = 0.71 to 0.97). The two profiles X1 and X2 have remained the stable, dominant subtypes since 1992. Cluster analysis based on the unweighted pair group method using arithmetic averages algorithm identifies two main clusters (at 87% similarity), indicating that the divergence of the PFGE subtypes was probably derived from some genomic mutations of the X1 and X2 subtypes. The majority of isolates were from patients with mild and moderate typhoid fever and had various XbaI profiles. A single isolate from a patient with fatal typhoid fever had a unique X11 profile, while four of six isolates from patients with severe typhoid fever had the X1 pattern. In addition, 12 paired serovar Typhi isolates recovered from the blood and fecal swabs of individual patients exhibited similar PFGE patterns, while in another 11 individuals paired isolates exhibited different PFGE patterns. Three pairs of isolates recovered from three individuals had different phage types and PFGE patterns, indicating infection with multiple strains. The study reiterates the usefulness of PFGE in assessing the genetic diversity of S. enterica serovar Typhi for both long-term epidemiology and in vivo stability and instability within an individual patient.
    Matched MeSH terms: Salmonella typhi/classification*; Salmonella typhi/genetics; Salmonella typhi/isolation & purification
  5. Tang SW, Abubakar S, Devi S, Puthucheary S, Pang T
    Infect Immun, 1997 Jul;65(7):2983-6.
    PMID: 9199477
    The heat shock protein (HSP) response of Salmonella typhi following exposure to elevated growth temperatures was studied. Three major proteins with molecular sizes of 58, 68, and 88 kDa were abundantly expressed when S. typhi cells were shifted from 37 to 45 degrees C and to 55 degrees C. These proteins were also constitutively expressed at 37 degrees C. Western blotting and immunoprecipitation studies with anti-HSP monoclonal antibodies revealed that the 58- and 68-kDa proteins were analogous to the GroEL and DnaK proteins, respectively, of Escherichia coli. These HSPs are also abundantly present in the outer membrane fraction of disrupted cells and, to a lesser extent, in the cytosol. Immunoblotting experiments with sera from patients with a culture-positive diagnosis of typhoid fever showed the presence of antibodies to these HSPs. Nine of twelve sera reacted with the 58-, 68-, and 88-kDa proteins, while three sera reacted only with the 68- and 88-kDa proteins. All 10 sera from healthy individuals showed no binding to these HSPs. In light of the well-documented roles of HSPs in the pathogenesis of microbial infections and as immunodominant antigens, these findings may be relevant for a better understanding of disease processes and for the future development of diagnostic and preventive strategies.
    Matched MeSH terms: Salmonella typhi/metabolism*
  6. Othman N, Ismail IH, Yip R, Zainuddin Z, Kasim SM, Isa R, et al.
    Pediatr Infect Dis J, 2007 Oct;26(10):960-1.
    PMID: 17901807 DOI: 10.1097/INF.0b013e3181257234
    Two tsunami survivors from Banda Acheh, Sumatra, presented with pyrexia of unknown origin and a nonresolving left-sided empyema, respectively. Both children had mixed infections of tuberculosis and melioidosis; Salmonella typhi was also present in the second patient. Mixed infections are common late sequela complications in post-tsunami victims.
    Matched MeSH terms: Salmonella typhi/isolation & purification
  7. Yap KP, Teh CS, Baddam R, Chai LC, Kumar N, Avasthi TS, et al.
    J Bacteriol, 2012 Sep;194(18):5124-5.
    PMID: 22933756 DOI: 10.1128/JB.01062-12
    Salmonella enterica serovar Typhi is the causative agent of typhoid fever, which causes nearly 21.7 million illnesses and 217,000 deaths globally. Herein, we describe the whole-genome sequence of the Salmonella Typhi strain ST0208, isolated from a sporadic case of typhoid fever in Kuala Lumpur, Malaysia. The whole-genome sequence and comparative genomics allow an in-depth understanding of the genetic diversity, and its link to pathogenicity and evolutionary dynamics, of this highly clonal pathogen that is endemic to Malaysia.
    Matched MeSH terms: Salmonella typhi/genetics*; Salmonella typhi/isolation & purification
  8. Leong SW, Lim TS, Ismail A, Choong YS
    J. Mol. Recognit., 2018 05;31(5):e2695.
    PMID: 29230887 DOI: 10.1002/jmr.2695
    With the development of de novo binders for protein targets from non-related scaffolds, many possibilities for therapeutics and diagnostics have been created. In this study, we described the use of de novo design approach to create single-chain fragment variable (scFv) for Salmonella enterica subspecies enterica serovar Typhi TolC protein. Typhoid fever is a global health concern in developing and underdeveloped countries. Rapid typhoid diagnostics will improve disease management and therapy. In this work, molecular dynamics simulation was first performed on a homology model of TolC protein in POPE membrane bilayer to obtain the central structure that was subsequently used as the target for scFv design. Potential hotspot residues capable of anchoring the binders to the target were identified by docking "disembodied" amino acid residues against TolC surface. Next, scFv scaffolds were selected from Protein Data Bank to harbor the computed hotspot residues. The hotspot residues were then incorporated into the scFv scaffold complementarity determining regions. The designs recapitulated binding energy, shape complementarity, and interface surface area of natural protein-antibody interfaces. This approach has yielded 5 designs with high binding affinity against TolC that may be beneficial for the future development of antigen-based detection agents for typhoid diagnostics.
    Matched MeSH terms: Salmonella typhi/immunology; Salmonella typhi/metabolism*
  9. Lee CW, Ng AY, Bong CW, Narayanan K, Sim EU, Ng CC
    Water Res, 2011 Feb;45(4):1561-70.
    PMID: 21146847 DOI: 10.1016/j.watres.2010.11.025
    Using the size fractionation method, we measured the decay rates of Escherichia coli, Salmonella Typhi and Vibrio parahaemolyticus in the coastal waters of Peninsular Malaysia. The size fractions were total or unfiltered, <250 μm, <20 μm, <2 μm, <0.7 μm, <0.2 μm and <0.02 μm. We also carried out abiotic (inorganic nutrients) and biotic (bacterial abundance, production and protistan bacterivory) measurements at Port Dickson, Klang and Kuantan. Klang had highest nutrient concentrations whereas both bacterial production and protistan bacterivory rates were highest at Kuantan. We observed signs of protist-bacteria coupling via the following correlations: Protistan bacterivory-Bacterial Production: r = 0.773, df = 11, p < 0.01; Protist-Bacteria: r = 0.586, df = 12, p < 0.05. However none of the bacterial decay rates were correlated with the biotic variables measured. E. coli and Salmonella decay rates were generally higher in the larger fraction (>0.7 μm) than in the smaller fraction (<0.7 μm) suggesting the more important role played by protists. E. coli and Salmonella also decreased in the <0.02 μm fraction and suggested that these non-halophilic bacteria did not survive well in seawater. In contrast, Vibrio grew well in seawater. There was usually an increase in Vibrio after one day incubation. Our results confirmed that decay or loss rates of E. coli did not match that of Vibrio, and also did not correlate with Salmonella decay rates. However E. coli showed persistence where its decay rates were generally lower than Salmonella.
    Matched MeSH terms: Salmonella typhi/growth & development; Salmonella typhi/isolation & purification*
  10. Khan SA, Khan SU, Fozia, Ullah N, Shah M, Ullah R, et al.
    Molecules, 2021 Apr 02;26(7).
    PMID: 33918531 DOI: 10.3390/molecules26072048
    Admittedly, the disastrous emergence of drug resistance in prokaryotic and eukaryotic human pathogens has created an urgent need to develop novel chemotherapeutic agents. Onosma chitralicum is a source of traditional medicine with cooling, laxative, and anthelmintic effects. The objective of the current research was to analyze the biological potential of Onosma chitralicum, and to isolate and characterize the chemical constituents of the plant. The crude extracts of the plant prepared with different solvents, such as aqueous, hexane, chloroform, ethyl acetate, and butanol, were subjected to antimicrobial activities. Results corroborate that crude (methanol), EtoAc, and n-C6H14 fractions were more active against bacterial strains. Among these fractions, the EtoAc fraction was found more potent. The EtoAc fraction was the most active against the selected microbes, which was subjected to successive column chromatography, and the resultant compounds 1 to 7 were isolated. Different techniques, such as UV, IR, and NMR, were used to characterize the structures of the isolated compounds 1-7. All the isolated pure compounds (1-7) were tested for their antimicrobial potential. Compounds 1 (4',8-dimethoxy-7-hydroxyisoflavone), 6 (5,3',3-trihydroxy-7,4'-dimethoxyflavanone), and 7 (5',7,8-trihydroxy-6,3',4'-trimethoxyflavanone) were found to be more active against Staphylococcus aureus and Salmonella Typhi. Compound 1 inhibited S. typhi and S. aureus to 10 ± 0.21 mm and 10 ± 0.45 mm, whereas compound 6 showed inhibition to 10 ± 0.77 mm and 9 ± 0.20 mm, respectively. Compound 7 inhibited S. aureus to 6 ± 0.36 mm. Compounds 6 and 7 showed significant antibacterial potential, and the structure-activity relationship also justifies their binding to the bacterial enzymes, i.e., beta-hydroxyacyl dehydratase (HadAB complex) and tyrosyl-tRNA synthetase. Both bacterial enzymes are potential drug targets. Further, the isolated compounds were found to be active against the tested fungal strains. Whereas docking identified compound 7, the best binder to the lanosterol 14α-demethylase (an essential fungal cell membrane synthesizing enzyme), reported as an antifungal fluconazole binding enzyme. Based on our isolation-linked preliminary structure-activity relationship (SAR) data, we conclude that O. chitralicum can be a good source of natural compounds for drug development against some potential enzyme targets.
    Matched MeSH terms: Salmonella typhi/drug effects*; Salmonella typhi/metabolism
  11. Sosroseno W, Herminajeng E, Bird PS, Seymour GJ
    Oral Microbiol. Immunol., 2004 Apr;19(2):65-70.
    PMID: 14871343
    The aim of this study was to determine nitric oxide (NO) production of a murine macrophage cell line (RAW 264.7 cells) when stimulated with Porphyromonas gingivalis lipopolysaccharides (Pg-LPS). RAW 264.7 cells were incubated with i) various concentrations of Pg-LPS or Salmonella typhosa LPS (St-LPS), ii) Pg-LPS with or without L-arginine and/or NG-monomethyl-L-arginine (NMMA), an arginine analog or iii) Pg-LPS and interferon-gamma (IFN-gamma) with or without anti-IFN-gamma antibodies or interleukin-10 (IL-10). Tissue culture supernatants were assayed for NO levels after 24 h in culture. NO was not observed in tissue culture supernatants of RAW 264.7 cells following stimulation with Pg-LPS, but was observed after stimulation with St-LPS. Exogenous L-arginine restored the ability of Pg-LPS to induce NO production; however, the increase in NO levels of cells stimulated with Pg-LPS with exogenous L-arginine was abolished by NMMA. IFN-gamma induced independent NO production by Pg-LPS-stimulated macrophages and this stimulatory effect of IFN-gamma could be completely suppressed by anti-IFN-gamma antibodies and IL-10. These results suggest that Pg-LPS is able to stimulate NO production in the RAW 264.7 macrophage cell model in an L-arginine-dependent mechanism which is itself independent of the action of IFN-gamma.
    Matched MeSH terms: Salmonella typhi
  12. Alhaj-Qasem DM, Al-Hatamleh MAI, Irekeola AA, Khalid MF, Mohamud R, Ismail A, et al.
    Diagnostics (Basel), 2020 Jun 28;10(7).
    PMID: 32605310 DOI: 10.3390/diagnostics10070438
    Paratyphoid fever is caused by the bacterium Salmonellaenterica serovar Paratyphi (A, B and C), and contributes significantly to global disease burden. One of the major challenges in the diagnosis of paratyphoid fever is the lack of a proper gold standard. Given the absence of a licensed vaccine against S. Paratyphi, this diagnostic gap leads to inappropriate antibiotics use, thus, enhancing antimicrobial resistance. In addition, the symptoms of paratyphoid overlap with other infections, including the closely related typhoid fever. Since the development and utilization of a standard, sensitive, and accurate diagnostic method is essential in controlling any disease, this review discusses a new promising approach to aid the diagnosis of paratyphoid fever. This advocated approach is based on the use of surface plasmon resonance (SPR) biosensor and DNA probes to detect specific nucleic acid sequences of S. Paratyphi. We believe that this SPR-based genoassay can be a potent alternative to the current conventional diagnostic methods, and could become a rapid diagnostic tool for paratyphoid fever.
    Matched MeSH terms: Salmonella typhi
  13. Choo KE, Davis TM, Ismail A, Ong KH
    Am J Trop Med Hyg, 1997 Dec;57(6):656-9.
    PMID: 9430522
    The objective of this study was to investigate the longevity of positive dot enzyme immunosorbent assay (dot EIA) results for IgM and IgG to a Salmonella typhi outer membrane protein in Malaysian children with enteric fever. The patients were children one month to 12 years of age with clinical evidence of typhoid fever, positive blood or stool cultures for S. typhi, and/or a positive Widal test result who were admitted over a two-year period to General Hospital (Kota Bharu, Malaysia). These patients received standard inpatient treatment for enteric fever including chloramphenicol therapy for 14 days. Dot EIA tests were performed as part of clinical and laboratory assessments on admission, at two weeks, and then at 3, 6, 9, 12, 15, 18, and 21 months postdischarge. Assessment of the longevity of positive dot EIA IgM and IgG titers was done by Kaplan-Meier analysis. In 94 evaluable patients, 28% were dot EIA IgM positive but IgG negative on admission, 50% were both IgM and IgG positive, and 22% were IgM negative and IgG positive. Mean persistence of IgM dot EIA positivity was 2.6 months (95% confidence interval = 2.0-3.1 months) and that of IgG was 5.4 months (4.5-6.3 months). There were no significant differences between the three subgroups. Thus, positive IgM and IgG results determined by dot EIA within four and seven months, respectively, following documented or suspected enteric fever in a child from an endemic area should be interpreted with caution. In other clinical situations, the dot EIA remains a rapid and reliable aid to diagnosis.
    Matched MeSH terms: Salmonella typhi/immunology*
  14. Murugan K, Suresh U, Panneerselvam C, Rajaganesh R, Roni M, Aziz AT, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10456-10470.
    PMID: 28913784 DOI: 10.1007/s11356-017-0074-3
    The development of novel mosquito control tools is a key prerequisite to build effective and reliable Integrated Vector Management strategies. Here, we proposed a novel method using cigarette butts for the synthesis of Ag nanostructures toxic to young instars of the malaria vector Anopheles stephensi, chloroquine (CQ)-resistant malaria parasites Plasmodium falciparum and microbial pathogens. The non-target impact of these nanomaterials in the aquatic environment was evaluated testing them at sub-lethal doses on the predatory copepod Mesocyclops aspericornis. Cigarette butt-synthesized Ag nanostructures were characterized by UV-vis and FTIR spectroscopy, as well as by EDX, SEM and XRD analyses. Low doses of cigarette butt extracts (with and without tobacco) showed larvicidal and pupicidal toxicity on An. stephensi. The LC50 of cigarette butt-synthesized Ag nanostructures ranged from 4.505 ppm (I instar larvae) to 8.070 ppm (pupae) using smoked cigarette butts with tobacco, and from 3.571 (I instar larvae) to 6.143 ppm (pupae) using unsmoked cigarette butts without tobacco. Smoke toxicity experiments conducted against adults showed that unsmoked cigarette butts-based coils led to mortality comparable to permethrin-based positive control (84.2 and 91.2%, respectively). A single treatment with cigarette butts extracts and Ag nanostructures significantly reduced egg hatchability of An. stephensi. Furthermore, the antiplasmodial activity of cigarette butt extracts (with and without tobacco) and synthesized Ag nanostructures was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. The lowest IC50 values were achieved by cigarette butt extracts without tobacco, they were 54.63 μg/ml (CQ-s) and 63.26 μg/ml (CQ-r); while Ag nanostructure IC50 values were 72.13 μg/ml (CQ-s) and 77.33 μg/ml (CQ-r). In MIC assays, low doses of the Ag nanostructures inhibited the growth of Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi. Finally, the predation efficiency of copepod M. aspericornis towards larvae of An. stephensi did not decrease in a nanoparticle-contaminated environment, if compared to control predation assays. Overall, the present research would suggest that an abundant hazardous waste, such as cigarette butts, can be turned to an important resource for nanosynthesis of highly effective antiplasmodials and insecticides.
    Matched MeSH terms: Salmonella typhi
  15. Yuen HL, Shamala D, Thong KL
    J Infect Dev Ctries, 2008 Aug 30;2(4):313-23.
    PMID: 19741295
    BACKGROUND: Heat shock proteins (HSPs) are known to be involved in the pathogenesis of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever. The objective of this study was to apply a phage display library to identify mimotopes of two HSPs, HSP90 and DnaK in S. Typhi.

    METHODOLOGY: A 12-mer random peptide library expressed on the surface of the filamentous phage, M13, was used to select the mimotopes of two S. Typhi heat shock proteins by biopanning with monoclonal antibodies (mAbs), DnaK and HSP90. The immunogenicity of the selected peptides was determined through binding affinity with polyclonal antibodies from pooled typhoid-confirmed patients' sera and purified HSPs mAb using Western blotting and ELISA.

    RESULTS: Five rounds of biopanning resulted in enrichment of phage clones expressing the binding motifs TDxSTRP and FPSHYWLYPPPT, respectively. The selected peptides showed strong immunoreactivity with patients' sera. Thus, monoclonal antibodies against HSP and patient sera can select common mimotopes from the random peptide library.

    CONCLUSION: These findings may provide fundamental information for further studies on diagnostic application or vaccine design against this aetiologic agent of typhoid fever.

    Matched MeSH terms: Salmonella typhi/immunology*
  16. Tang SS, Tan WS, Devi S, Wang LF, Pang T, Thong KL
    Clin Diagn Lab Immunol, 2003 Nov;10(6):1078-84.
    PMID: 14607870
    The capsular polysaccharide Vi antigen (ViCPS) is an essential virulence factor and also a protective antigen of Salmonella enterica serovar Typhi. A random 12-mer phage-displayed peptide library was used to identify mimotopes (epitope analogues) of this antigen by panning against a ViCPS-specific monoclonal antibody (MAb) ATVi. Approximately 75% of the phage clones selected in the fourth round carried the peptide sequence TSHHDSHGLHRV, and the rest of the clones harbored ENHSPVNIAHKL and other related sequences. These two sequences were also obtained in a similar panning process by using pooled sera from patients with a confirmed diagnosis of typhoid fever, suggesting they mimic immunodominant epitopes of ViCPS antigens. Binding of MAb ATVi to the mimotopes was specifically blocked by ViCPS, indicating that they interact with the same binding site (paratope) of the MAb. Data and reagents generated in this study have important implications for the development of peptide-base diagnostic tests and peptide vaccines and may also provide a better understanding of the pathogenesis of typhoid fever.
    Matched MeSH terms: Salmonella typhi/immunology*; Salmonella typhi/isolation & purification
  17. Thong KL, Cordano AM, Yassin RM, Pang T
    Appl Environ Microbiol, 1996 Jan;62(1):271-4.
    PMID: 8572705
    Molecular characterization of a total of 54 isolates of Salmonella typhi from Santiago, Chile, was performed by pulsed-field gel electrophoresis (PFGE) after digestion of chromosomal DNA with three restriction endonucleases: XbaI (5'-TCTAGA-3'), AvrII (5'-CCTAGG-3'), and SpeI (5'-ACTAGT-3'). Thirteen of the 54 isolates were obtained from environmental sources (sewage and river water), and the rest were isolates from clinical cases of typhoid fever. Considerable genetic diversity was detected among the human isolates obtained in 1994, as evidenced by the presence of 14 to 19 different PFGE patterns among 20 human isolates, with F (coefficient of similarity) values ranging from 0.69 to 1.0 (XbaI), 0.61 to 1.0 (AvrII), and 0.70 to 1.0 (SpeI). A total of eight phage types were detected among these 20 isolates, with 50% possessing the E1 or 46 phage type. There was no correlation between PFGE pattern and phage types. Similar diversity was seen among 21 isolates obtained in 1983, with 17 to 19 PFGE patterns detected and F values of 0.56 to 1.0 (XbaI), 0.55 to 1.0 (AvrII), and 0.67 to 1.0 (SpeI). Comparison of these two groups of human isolates obtained 11 years apart indicated that certain molecular types of S. typhi are shared and are able to persist for considerable periods. A similar degree of genetic diversity was also detected among the environmental isolates of S. typhi, for which 10 to 12 different PFGE patterns were detected among the 13 isolates analyzed, with F values ranging from 0.56 to 1.0 (XbaI), 0.52 to 1.0 (AvrII), and 0.69 to 1.0 (SpeI). Certain molecular types present among the environmental isolates of S. typhi were also found among the human isolates from the same time period, providing evidence for the epidemiological link between environmental reservoirs and human infection.
    Matched MeSH terms: Salmonella typhi/classification; Salmonella typhi/genetics*; Salmonella typhi/isolation & purification
  18. Thong KL, Passey M, Clegg A, Combs BG, Yassin RM, Pang T
    J Clin Microbiol, 1996 Apr;34(4):1029-33.
    PMID: 8815078
    Molecular characterization of a total of 52 human isolates of Salmonella typhi from Papua New Guinea was performed by using pulsed-field gel electrophoresis (PFGE) after digestion of chromosomal DNA with three restriction endonucleases, XbaI (5'-TCTAGA-3'), AvrII (5'-CCTAGG-3'), and SpeI (5'-ACTAGT-3'). Of the 52 isolates tested, 11 were obtained from patients with fatal typhoid fever and 41 were obtained from patients with nonfatal disease. The 52 isolates showed limited genetic diversity as evidenced by only three different PFGE patterns detected following digestion with XbaI (patterns X1 to X3; F [coefficient of similarity] = 0.86 to 1.0), four patterns detected following digestion with AvrII (patterns A1 to A4; F =0.78 to 1.0), and two patterns detected following digestion with SpeI (patterns S1 and S2; F = 0.97 to 1.0). Of the 52 isolates, 37 were phage typed, and all belonged to phage type D2. All 11 isolates obtained from patients with fatal typhoid fever were identical (F = 1.0) and possessed the PFGE pattern combination X1S1A1, whereas the 41 isolates from patients with nonfatal typhoid fever had various PFGE pattern combinations, the most common being X2S1A2 (39%), X1S1A1 (24%), and X1S1A2 (15%). Thus, all the isolates from patients with the fatal disease had the X1 and A1 patterns, whereas the majority of the isolates from patients with nonfatal typhoid fever possessed the X2 and A2 patterns. The data suggest that there is an association among strains of S. typhi between genotype, as assessed by PFGE patterns, and the capability to cause fatal illness. Analysis of blood and fecal isolates of S. typhi from the same patient also indicated that some genetic changes occur in vivo during the course of infection.
    Matched MeSH terms: Salmonella typhi/genetics*; Salmonella typhi/isolation & purification*; Salmonella typhi/pathogenicity
  19. Liu Y, Lee MA, Ooi EE, Mavis Y, Tan AL, Quek HH
    J Clin Microbiol, 2003 Sep;41(9):4388-94.
    PMID: 12958274
    A multiplex PCR method incorporating primers flanking three variable-number tandem repeat (VNTR) loci (arbitrarily labeled TR1, TR2, and TR3) in the CT18 strain of Salmonella enterica serovar Typhi has been developed for molecular typing of S. enterica serovar Typhi clinical isolates from several Asian countries, including Singapore, Indonesia, India, Bangladesh, Malaysia, and Nepal. We have demonstrated that the multiplex PCR could be performed on crude cell lysates and that the VNTR banding profiles produced could be easily analyzed by visual inspection after conventional agarose gel electrophoresis. The assay was highly discriminative in identifying 49 distinct VNTR profiles among 59 individual isolates. A high level of VNTR profile heterogeneity was observed in isolates from within the same country and among countries. These VNTR profiles remained stable after the strains were passaged extensively under routine laboratory culture conditions. In contrast to the S. enterica serovar Typhi isolates, an absence of TR3 amplicons and a lack of length polymorphisms in TR1 and TR2 amplicons were observed for other S. enterica serovars, such as Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Paratyphi A, B, and C. DNA sequencing of the amplified VNTR regions substantiated these results, suggesting the high stability of the multiplex PCR assay. The multiplex-PCR-based VNTR profiling developed in this study provides a simple, rapid, reproducible, and high-resolution molecular tool for the epidemiological analysis of S. enterica serovar Typhi strains.
    Matched MeSH terms: Salmonella typhi/classification*; Salmonella typhi/genetics
  20. Ong EB, Ignatius J, Anthony AA, Aziah I, Ismail A, Lim TS
    Microbiol. Immunol., 2015 Jan;59(1):43-7.
    PMID: 25399538 DOI: 10.1111/1348-0421.12211
    The detection and measurement of different antibody isotypes in the serum provide valuable indicators of the different stages of typhoid infection. Here, the ability of S. Typhi recombinant hemolysin E (HlyE) to detect multi-isotype antibody responses in sera of patients with typhoid and paratyphoid A was investigated using an indirect antibody immunoassay. Nanogram amounts of HlyE were found to be sufficient for detection of IgG and IgA isotypes and, in a study of individuals' sera (n = 100), the immunoassay was able to distinguish between typhoid and non-typhoid sera. The overall sensitivity, specificity and efficiency of the ELISA were 70% (39/56), 100% (44/44) and 83% respectively.
    Matched MeSH terms: Salmonella typhi/genetics; Salmonella typhi/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links