Displaying publications 61 - 80 of 146 in total

Abstract:
Sort:
  1. Goudarzi S, Haslina Hassan W, Abdalla Hashim AH, Soleymani SA, Anisi MH, Zakaria OM
    PLoS One, 2016;11(7):e0151355.
    PMID: 27438600 DOI: 10.1371/journal.pone.0151355
    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF-FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model's performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF-FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF-FFA model can be applied as an efficient technique for the accurate prediction of vertical handover.
    Matched MeSH terms: Wireless Technology*
  2. Gouwanda D, Senanayake SM
    J Med Eng Technol, 2011 Nov;35(8):432-40.
    PMID: 22074136 DOI: 10.3109/03091902.2011.627080
    A real-time gait monitoring system that incorporates an immediate and periodical assessment of gait asymmetry is described. This system was designed for gait analysis and rehabilitation of patients with pathologic gait. It employs wireless gyroscopes to measure the angular rate of the thigh and shank in real time. Cross-correlation of the lower extremity (Cc(norm)), and normalized Symmetry Index (SI(norm)) are implemented as new approaches to periodically determine the gait asymmetry in each gait cycle. Cc(norm) evaluates the signal patterns measured by wireless gyroscopes in each gait cycle. SI(norm) determines the movement differences between the left and right limb. An experimental study was conducted to examine the viability of these methods. Artificial asymmetrical gait was simulated by placing a load on one side of the limbs. Results showed that there were significant differences between the normal gait and asymmetrical gait (p < 0.01). They also indicated that the system worked well in periodically assessing the gait asymmetry.
    Matched MeSH terms: Wireless Technology/instrumentation*
  3. Gouwanda D, Senanayake NA
    PMID: 22256153 DOI: 10.1109/IEMBS.2011.6091928
    Gait stability is primary in assessing individuals with high risk of falling, particularly the elderly. Custom made self-adjustable wireless gyroscope suit is used as a sensing device to quantify gait stability. A nonlinear time series analysis i.e. maximum Lyapunov exponent (λ*) was employed to estimate the short term and long term stability and it is closely related to the ability of human neuro-muscular control system in maintaining gait stability. Experimental analysis and tests validated the efficacy of this novel approach. The results achieved are comparable with the findings of multiple kinematic and dynamic parameters derived from optical motion capture system and force platform which are widely used as gold standard.
    Matched MeSH terms: Wireless Technology/instrumentation*
  4. Gouwanda D, Senanayake SM
    J Biomech, 2011 Mar 15;44(5):972-8.
    PMID: 21306714 DOI: 10.1016/j.jbiomech.2010.12.013
    Injury to a lower limb may disrupt natural walking and cause asymmetrical gait, therefore assessing the gait asymmetry has become one of the important procedures in gait analysis. This paper proposes the use of wireless gyroscopes as a new instrument to determine gait asymmetry. It also introduces two novel approaches: normalized cross-correlations (Cc(norm)) and Normalized Symmetry Index (SI(norm)). Cc(norm) evaluates the waveform patterns generated by the lower limb in each gait cycle. SI(norm) provides indications on the timing and magnitude of the bilateral differences between the limbs while addressing the drawbacks of the conventional methods. One-way ANOVA test reveals that Cc(norm) can be considered as single value indicator that determines the gait asymmetry (p<0.01). The experiment results showed that SI(norm) in asymmetrical gait were different from normal gait. SI(norm) in asymmetrical gait were found to be approximately 20% greater than SI(norm) in normal gait during pre-swing and initial swing.
    Matched MeSH terms: Wireless Technology
  5. Gouwanda D, Gopalai AA
    Med Eng Phys, 2015 Feb;37(2):219-25.
    PMID: 25619613 DOI: 10.1016/j.medengphy.2014.12.004
    Gait events detection allows clinicians and biomechanics researchers to determine timing of gait events, to estimate duration of stance phase and swing phase and to segment gait data. It also aids biomedical engineers to improve the design of orthoses and FES (functional electrical stimulation) systems. In recent years, researchers have resorted to using gyroscopes to determine heel-strike (HS) and toe-off (TO) events in gait cycles. However, these methods are subjected to significant delays when implemented in real-time gait monitoring devices, orthoses, and FES systems. Therefore, the work presented in this paper proposes a method that addresses these delays, to ensure real-time gait event detection. The proposed algorithm combines the use of heuristics and zero-crossing method to identify HS and TO. Experiments involving: (1) normal walking; (2) walking with knee brace; and (3) walking with ankle brace for overground walking and treadmill walking were designed to verify and validate the identified HS and TO. The performance of the proposed method was compared against the established gait detection algorithms. It was observed that the proposed method produced detection rate that was comparable to earlier reported methods and recorded reduced time delays, at an average of 100 ms.
    Matched MeSH terms: Wireless Technology/instrumentation*
  6. Hasan MM, Faruque MRI, Islam MT
    Sci Rep, 2018 01 19;8(1):1240.
    PMID: 29352228 DOI: 10.1038/s41598-018-19705-3
    A compact metamaterial inspired antenna operate at LTE, Bluetooth and WiMAX frequency band is introduced in this paper. For the lower band, the design utilizes an outer square metallic strip forcing the patch to radiate as an equivalent magnetic-current loop. For the upper band, another magnetic current loop is created by adding metamaterial structure near the feed line on the patch. The metamaterial inspired antenna dimension of 42 × 32 mm2 compatible to wireless devices. Finite integration technique based CST Microwave Studio simulator has been used to design and numerical investigation as well as lumped circuit model of the metamaterial antenna is explained with proper mathematical derivation. The achieved measured dual band operation of the conventional antenna are sequentially, 0.561~0.578 GHz, 2.346~2.906 GHz, and 2.91~3.49 GHz, whereas the metamaterial inspired antenna shows dual-band operation from 0.60~0.64 GHz, 2.67~3.40 GHz and 3.61~3.67 GHz, respectively. Therefore, the metamaterial antenna is applicable for LTE and WiMAX applications. Besides, the measured metamaterial antenna gains of 0.15~3.81 dBi and 3.47~3.75 dBi, respectively for the frequency band of 2.67~3.40 GHz and 3.61~3.67 GHz.
    Matched MeSH terms: Wireless Technology
  7. Hasan MM, Islam MT, Samsuzzaman M, Baharuddin MH, Soliman MS, Alzamil A, et al.
    Sci Rep, 2022 Jun 08;12(1):9433.
    PMID: 35676407 DOI: 10.1038/s41598-022-13522-5
    This work proposes a compact metasurface (MS)-integrated wideband multiple-input multiple-output (MIMO) antenna for fifth generation (5G) sub-6 GHz wireless communication systems. The perceptible novelty of the proposed MIMO system is its wide operating bandwidth, high gain, lower interelement gap, and excellent isolation within the MIMO components. The radiating patch of the antenna is truncated diagonally with a partially ground plane, and a metasurface has been employed for enhancing the antenna performance. The suggested MS integrated single antenna prototype has a miniature dimension of 0.58λ × 0.58λ × 0.02λ. The simulated and measured findings demonstrate a wideband characteristic starting from 3.11 to 7.67 GHz including a high realized gain of 8 dBi. The four-element MIMO system has been designed by rendering each single antenna orthogonally to one another while retaining compact size and wideband properties between 3.2 and 7.6 GHz. The suggested MIMO prototype has been designed and fabricated on a low loss Rogers RT5880 substrate with a miniature dimension of 1.05λ × 1.05λ × 0.02λ and its performance is evaluated using a suggested 10 × 10 array of a square enclosed circular split ring resonators within the same substrate material. The inclusion of the proposed metasurface with a backplane significantly reduces antenna backward radiation and manipulates the electromagnetic field, thus improving the bandwidth, gain and isolation of MIMO components. The suggested 4-port MIMO antenna offers a high realized gain of 8.3 dBi compared to existing MIMO antennas with an excellent average total efficiency of 82% in the 5G sub-6 GHz spectrum and is in good accordance with measured results. Furthermore, the developed MIMO antenna exhibits outstanding diversity characteristics in respect of envelope correlation coefficient (ECC) less than 0.004, diversity gain (DG) close to 10 dB (> 9.98 dB) and high isolation between MIMO components (> 15.5 dB). Therefore, the proposed MS-inspired MIMO antenna substantiates its applicability for 5G sub-6 GHz communication networks.
    Matched MeSH terms: Wireless Technology*
  8. Hindia MN, Reza AW, Noordin KA
    ScientificWorldJournal, 2014;2014:246206.
    PMID: 25379524 DOI: 10.1155/2014/246206
    Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms' performance, it is compared with the existing RSS and multiple criteria handover decision algorithms.
    Matched MeSH terms: Wireless Technology/instrumentation*
  9. Hossain A, Islam MT, Almutairi AF, Singh MSJ, Mat K, Samsuzzaman M
    Sensors (Basel), 2020 Mar 01;20(5).
    PMID: 32121477 DOI: 10.3390/s20051354
    An Ultrawideband (UWB) octagonal ring-shaped parasitic resonator-based patch antenna for microwave imaging applications is presented in this study, which is constructed with a diamond-shaped radiating patch, three octagonal, rectangular slotted ring-shaped parasitic resonator elements, and partial slotting ground plane. The main goals of uses of parasitic ring-shaped elements are improving antenna performance. In the prototype, various kinds of slots on the ground plane were investigated, and especially rectangular slots and irregular zigzag slots are applied to enhance bandwidth, gain, efficiency, and radiation directivity. The optimized size of the antenna is 29 × 24 × 1.5 mm3 by using the FR-4 substrate. The overall results illustrate that the antenna has a bandwidth of 8.7 GHz (2.80 ̶ 11.50 GHz) for the reflection coefficient S11 < -10 dB with directional radiation pattern. The maximum gain of the proposed prototype is more than 5.7 dBi, and the average efficiency over the radiating bandwidth is 75%. Different design modifications are performed to attain the most favorable outcome of the proposed antenna. However, the prototype of the proposed antenna is designed and simulated in the 3D simulator CST Microwave Studio 2018 and then effectively fabricated and measured. The investigation throughout the study of the numerical as well as experimental data explicit that the proposed antenna is appropriate for the Ultrawideband-based microwave-imaging fields.
    Matched MeSH terms: Wireless Technology
  10. Hussein AA, Leow CY, Rahman TA
    PLoS One, 2017;12(5):e0177326.
    PMID: 28493977 DOI: 10.1371/journal.pone.0177326
    Localization of the wireless sensor network is a vital area acquiring an impressive research concern and called upon to expand more with the rising of its applications. As localization is gaining prominence in wireless sensor network, it is vulnerable to jamming attacks. Jamming attacks disrupt communication opportunity among the sender and receiver and deeply impact the localization process, leading to a huge error of the estimated sensor node position. Therefore, detection and elimination of jamming influence are absolutely indispensable. Range-based techniques especially Received Signal Strength (RSS) is facing severe impact of these attacks. This paper proposes algorithms based on Combination Multiple Frequency Multiple Power Localization (C-MFMPL) and Step Function Multiple Frequency Multiple Power Localization (SF-MFMPL). The algorithms have been tested in the presence of multiple types of jamming attacks including capture and replay, random and constant jammers over a log normal shadow fading propagation model. In order to overcome the impact of random and constant jammers, the proposed method uses two sets of frequencies shared by the implemented anchor nodes to obtain the averaged RSS readings all over the transmitted frequencies successfully. In addition, three stages of filters have been used to cope with the replayed beacons caused by the capture and replay jammers. In this paper the localization performance of the proposed algorithms for the ideal case which is defined by without the existence of the jamming attack are compared with the case of jamming attacks. The main contribution of this paper is to achieve robust localization performance in the presence of multiple jamming attacks under log normal shadow fading environment with a different simulation conditions and scenarios.
    Matched MeSH terms: Wireless Technology*
  11. Idrus II, Abdul Latef T, Aridas NK, Abu Talip MS, Yamada Y, Abd Rahman T, et al.
    PLoS One, 2019;14(12):e0226499.
    PMID: 31841536 DOI: 10.1371/journal.pone.0226499
    Researchers are increasingly showing interest in the application of a Butler matrix for fifth-generation (5G) base station antennas. However, the design of the Butler matrix is challenging at millimeter wave because of the very small wavelength. The literature has reported issues of high insertion losses and incorrect output phases at the output ports of the Butler matrix, which affects the radiation characteristics. To overcome these issues, the circuit elements of the Butler matrix such as the crossover, the quadrature hybrid and the phase shifter must be designed using highly accurate dimensions. This paper presents a low-loss and compact single-layer 8 × 8 Butler matrix operating at 28 GHz. The optimum design of each circuit element is also demonstrated in detail. The designed Butler matrix was fabricated to validate the simulated results. The measured results showed return losses of less than -10 dB at 28 GHz. The proposed Butler matrix achieved a low insertion loss and a low phase error of ± 2 dB and ± 10°, respectively. In sum, this work obtained a good agreement between the simulated and measured results.
    Matched MeSH terms: Wireless Technology/economics; Wireless Technology/instrumentation*
  12. Iqbal A, Jiat Tiang J, Kin Wong S, Alibakhshikenari M, Falcone F, Limiti E
    Sensors (Basel), 2020 Dec 19;20(24).
    PMID: 33352800 DOI: 10.3390/s20247320
    This article presents the detailed theoretical, simulation, and experimental analysis of a half-mode substrate integrated waveguide (HMSIW)-based multimode wideband filter. A third-order, semicircular HMSIW filter is developed in this paper. A semicircular HMSIW cavity resonator is adopted to achieve wide band characteristics. A U-shaped slot (acts as a λ/4 stub) in the center of a semicircular HMSIW cavity resonator and L-shaped open-circuited stubs are used to improve the out-of-band response by generating multiple transmission zeros (TZs) in the stop-band region of the filter. The TZs on either side of the passband can be controlled by adjusting dimensions of a U-shaped slot and L-shaped open-circuited stubs. The proposed filter covers a wide fractional bandwidth, has a lower insertion loss value, and has multiple TZs (which improves the selectivity). The simulated response of filter agrees well with the measured data. The proposed HMSIW bandpass filter can be integrated with any planar wideband communication system circuit, thanks to its planar structure.
    Matched MeSH terms: Wireless Technology
  13. Iqbal A, Smida A, Mallat NK, Islam MT, Kim S
    Sensors (Basel), 2019 Mar 22;19(6).
    PMID: 30909414 DOI: 10.3390/s19061411
    A minimally-sized, triple-notched band ultra-wideband (UWB) antenna, useful for many applications, is designed, analyzed, and experimentally validated in this paper. A modified maple leaf-shaped main radiating element with partial ground is used in the proposed design. An E-shaped resonator, meandered slot, and U-shaped slot are implemented in the proposed design to block the co-existing bands. The E-shaped resonator stops frequencies ranging from 1.8⁻2.3 GHz (Advanced Wireless System (AWS1⁻AWS2) band), while the meandered slot blocks frequencies from 3.2⁻3.8 GHz (WiMAX band). The co-existing band ranging from 5.6⁻6.1 GHz (IEEE 802.11/HIPERLANband) is blocked by utilizing the U-shaped section in the feeding network. The notched bands can be independently controlled over a wide range of frequencies using specific parameters. The proposed antenna is suitable for many applications because of its flat gain, good radiation characteristics at both principal planes, uniform group delay, and non-varying transfer function ( S 21 ) for the entire UWB frequency range.
    Matched MeSH terms: Wireless Technology
  14. Islam MM, Faruque MR, Islam MT
    ScientificWorldJournal, 2014;2014:528489.
    PMID: 24971379 DOI: 10.1155/2014/528489
    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.
    Matched MeSH terms: Wireless Technology*
  15. Islam MT, Samsuzzaman M
    ScientificWorldJournal, 2014;2014:673846.
    PMID: 24987742 DOI: 10.1155/2014/673846
    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78-8.91 GHz) and 10.35% (9.16-10.19 GHz) where S11 < -10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band.
    Matched MeSH terms: Wireless Technology/instrumentation*
  16. Jabeen T, Jabeen I, Ashraf H, Jhanjhi NZ, Yassine A, Hossain MS
    Sensors (Basel), 2023 May 25;23(11).
    PMID: 37299782 DOI: 10.3390/s23115055
    The Internet of Things (IoT) uses wireless networks without infrastructure to install a huge number of wireless sensors that track system, physical, and environmental factors. There are a variety of WSN uses, and some well-known application factors include energy consumption and lifespan duration for routing purposes. The sensors have detecting, processing, and communication capabilities. In this paper, an intelligent healthcare system is proposed which consists of nano sensors that collect real-time health status and transfer it to the doctor's server. Time consumption and various attacks are major concerns, and some existing techniques contain stumbling blocks. Therefore, in this research, a genetic-based encryption method is advocated to protect data transmitted over a wireless channel using sensors to avoid an uncomfortable data transmission environment. An authentication procedure is also proposed for legitimate users to access the data channel. Results show that the proposed algorithm is lightweight and energy efficient, and time consumption is 90% lower with a higher security ratio.
    Matched MeSH terms: Wireless Technology
  17. Jabeen T, Jabeen I, Ashraf H, Ullah A, Jhanjhi NZ, Ghoniem RM, et al.
    Sensors (Basel), 2023 Jul 02;23(13).
    PMID: 37447952 DOI: 10.3390/s23136104
    Programmable Object Interfaces are increasingly intriguing researchers because of their broader applications, especially in the medical field. In a Wireless Body Area Network (WBAN), for example, patients' health can be monitored using clinical nano sensors. Exchanging such sensitive data requires a high level of security and protection against attacks. To that end, the literature is rich with security schemes that include the advanced encryption standard, secure hashing algorithm, and digital signatures that aim to secure the data exchange. However, such schemes elevate the time complexity, rendering the data transmission slower. Cognitive radio technology with a medical body area network system involves communication links between WBAN gateways, server and nano sensors, which renders the entire system vulnerable to security attacks. In this paper, a novel DNA-based encryption technique is proposed to secure medical data sharing between sensing devices and central repositories. It has less computational time throughout authentication, encryption, and decryption. Our analysis of experimental attack scenarios shows that our technique is better than its counterparts.
    Matched MeSH terms: Wireless Technology
  18. Jawad HM, Nordin R, Gharghan SK, Jawad AM, Ismail M
    Sensors (Basel), 2017 Aug 03;17(8).
    PMID: 28771214 DOI: 10.3390/s17081781
    Wireless sensor networks (WSNs) can be used in agriculture to provide farmers with a large amount of information. Precision agriculture (PA) is a management strategy that employs information technology to improve quality and production. Utilizing wireless sensor technologies and management tools can lead to a highly effective, green agriculture. Based on PA management, the same routine to a crop regardless of site environments can be avoided. From several perspectives, field management can improve PA, including the provision of adequate nutrients for crops and the wastage of pesticides for the effective control of weeds, pests, and diseases. This review outlines the recent applications of WSNs in agriculture research as well as classifies and compares various wireless communication protocols, the taxonomy of energy-efficient and energy harvesting techniques for WSNs that can be used in agricultural monitoring systems, and comparison between early research works on agriculture-based WSNs. The challenges and limitations of WSNs in the agricultural domain are explored, and several power reduction and agricultural management techniques for long-term monitoring are highlighted. These approaches may also increase the number of opportunities for processing Internet of Things (IoT) data.
    Matched MeSH terms: Wireless Technology*
  19. Kaiwartya O, Kumar S, Lobiyal DK, Abdullah AH, Hassan AN
    Sensors (Basel), 2014;14(12):22342-71.
    PMID: 25429415 DOI: 10.3390/s141222342
    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed.
    Matched MeSH terms: Wireless Technology
  20. Khan A, Khan M, Ahmed S, Abd Rahman MA, Khan M
    PLoS One, 2019;14(7):e0219459.
    PMID: 31314772 DOI: 10.1371/journal.pone.0219459
    Underwater sensor networks (UWSNs) are ad-hoc networks which are deployed at rivers, seas and oceans to explore and monitor the phenomena such as pollution control, seismic activities and petroleum mining etc. The sensor nodes of UWSNs have limited charging capabilities. UWSNs networks are generally operated under two deployment mechanisms i.e localization and non-localization based. However, in both the mechanisms, balanced energy utilization is a challenging issue. Inefficient usage of energy significantly affects stability period, packet delivery ratio, end-to-end delay, path loss and throughput of a network. To efficiently utilize and harvest energy, this paper present a novel scheme called EH-ARCUN (Energy Harvesting Analytical approach towards Reliability with Cooperation for UWSNs) based on cooperation with energy harvesting. The scheme employs Amplify-and-Forward (AF) technique at relay nodes for data forwarding and Fixed Combining Ratio (FCR) technique at destination node to select accurate signal. The proposed technique selects relay nodes among its neighbor nodes based on harvested energy level. Most cooperation-based UWSN routing techniques do not exhibit energy harvesting mechanism at the relay nodes. EH-ARCUN deploys piezoelectric energy harvesting at relay nodes to improve the working capabilities of sensors in UWSNs. The proposed scheme is an extension of our previously implemented routing scheme called ARCUN for UWSNs. Performance of the proposed scheme is compared with ARCUN and RACE (Reliability and Adaptive Cooperation for efficient Underwater sensor Networks) schemes in term of stability period, packet delivery ratio, network throughput and path loss. Extensive simulation results show that EH-ARCUN performs better than both previous schemes in terms of the considered parameters.
    Matched MeSH terms: Wireless Technology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links