OBJECTIVE: To investigate the effects of electrical stimulation of the tragus on autonomic outputs in the rat and probe the underlying neural pathways.
METHODS: Central neuronal projections from nerves innervating the external auricle were investigated by injections of the transganglionic tracer cholera toxin B chain (CTB) into the right tragus of Wistar rats. Physiological recordings of heart rate, perfusion pressure, respiratory rate and sympathetic nerve activity were made in an anaesthetic free Working Heart Brainstem Preparation (WHBP) of the rat and changes in response to electrical stimulation of the tragus analysed.
RESULTS: Neuronal tracing from the tragus revealed that the densest CTB labelling was within laminae III-IV of the dorsal horn of the upper cervical spinal cord, ipsilateral to the injection sites. In the medulla oblongata, CTB labelled afferents were observed in the paratrigeminal nucleus, spinal trigeminal tract and cuneate nucleus. Surprisingly, only sparse labelling was observed in the vagal afferent termination site, the nucleus tractus solitarius. Recordings made from rats at night time revealed more robust sympathetic activity in comparison to day time rats, thus subsequent experiments were conducted in rats at night time. Electrical stimulation was delivered across the tragus for 5 min. Direct recording from the sympathetic chain revealed a central sympathoinhibition by up to 36% following tragus stimulation. Sympathoinhibition remained following sectioning of the cervical vagus nerve ipsilateral to the stimulation site, but was attenuated by sectioning of the upper cervical afferent nerve roots.
CONCLUSIONS: Inhibition of the sympathetic nervous system activity upon electrical stimulation of the tragus in the rat is mediated at least in part through sensory afferent projections to the upper cervical spinal cord. This challenges the notion that tragal stimulation is mediated by the auricular branch of the vagus nerve and suggests that alternative mechanisms may be involved.
METHODS: In an international, randomized, single-blind trial, we compared polymer-based zotarolimus-eluting stents with polymer-free umirolimus-coated stents in patients at high bleeding risk. After PCI, patients were treated with 1 month of dual antiplatelet therapy, followed by single antiplatelet therapy. The primary outcome was a safety composite of death from cardiac causes, myocardial infarction, or stent thrombosis at 1 year. The principal secondary outcome was target-lesion failure, an effectiveness composite of death from cardiac causes, target-vessel myocardial infarction, or clinically indicated target-lesion revascularization. Both outcomes were powered for noninferiority.
RESULTS: A total of 1996 patients at high bleeding risk were randomly assigned in a 1:1 ratio to receive zotarolimus-eluting stents (1003 patients) or polymer-free drug-coated stents (993 patients). At 1 year, the primary outcome was observed in 169 of 988 patients (17.1%) in the zotarolimus-eluting stent group and in 164 of 969 (16.9%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% confidence interval [CI], 3.5; noninferiority margin, 4.1; P = 0.01 for noninferiority). The principal secondary outcome was observed in 174 patients (17.6%) in the zotarolimus-eluting stent group and in 169 (17.4%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% CI, 3.5; noninferiority margin, 4.4; P = 0.007 for noninferiority).
CONCLUSIONS: Among patients at high bleeding risk who received 1 month of dual antiplatelet therapy after PCI, use of polymer-based zotarolimus-eluting stents was noninferior to use of polymer-free drug-coated stents with regard to safety and effectiveness composite outcomes. (Funded by Medtronic; ONYX ONE ClinicalTrials.gov number, NCT03344653.).