Displaying publications 821 - 840 of 1086 in total

Abstract:
Sort:
  1. Obaid HA, Shahid S, Basim KN, Chelliapan S
    Water Sci Technol, 2015;72(6):1029-42.
    PMID: 26360765 DOI: 10.2166/wst.2015.297
    Water pollution during festival periods is a major problem in all festival cities across the world. Reliable prediction of water pollution is essential in festival cities for sewer and wastewater management in order to ensure public health and a clean environment. This article aims to model the biological oxygen demand (BOD(5)), and total suspended solids (TSS) parameters in wastewater in the sewer networks of Karbala city center during festival and rainy days using structural equation modeling and multiple linear regression analysis methods. For this purpose, 34 years (1980-2014) of rainfall, temperature and sewer flow data during festival periods in the study area were collected, processed, and employed. The results show that the TSS concentration increases by 26-46 mg/l while BOD(5) concentration rises by 9-19 mg/l for an increase of rainfall by 1 mm during festival periods. It was also found that BOD(5) concentration rises by 4-17 mg/l for each increase of 10,000 population.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  2. Razali N, Abdul Aziz A, Lim CY, Mat Junit S
    PeerJ, 2015;3:e1292.
    PMID: 26557426 DOI: 10.7717/peerj.1292
    The leaf extract of Tamarindus indica L. (T. indica) had been reported to possess high phenolic content and showed high antioxidant activities. In this study, the effects of the antioxidant-rich leaf extract of the T. indica on lipid peroxidation, antioxidant enzyme activities, H2O2-induced ROS production and gene expression patterns were investigated in liver HepG2 cells. Lipid peroxidation and ROS production were inhibited and the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was enhanced when the cells were treated with the antioxidant-rich leaf extract. cDNA microarray analysis revealed that 207 genes were significantly regulated by at least 1.5-fold (p < 0.05) in cells treated with the antioxidant-rich leaf extract. The expression of KNG1, SERPINC1, SERPIND1, SERPINE1, FGG, FGA, MVK, DHCR24, CYP24A1, ALDH6A1, EPHX1 and LEAP2 were amongst the highly regulated. When the significantly regulated genes were analyzed using Ingenuity Pathway Analysis software, "Lipid Metabolism, Small Molecule Biochemistry, Hematological Disease" was the top biological network affected by the leaf extract, with a score of 36. The top predicted canonical pathway affected by the leaf extract was the coagulation system (P < 2.80 × 10(-6)) followed by the superpathway of cholesterol biosynthesis (P < 2.17 × 10(-4)), intrinsic prothrombin pathway (P < 2.92 × 10(-4)), Immune Protection/Antimicrobial Response (P < 2.28 × 10(-3)) and xenobiotic metabolism signaling (P < 2.41 × 10(-3)). The antioxidant-rich leaf extract of T. indica also altered the expression of proteins that are involved in the Coagulation System and the Intrinsic Prothrombin Activation Pathway (KNG1, SERPINE1, FGG), Superpathway of Cholesterol Biosynthesis (MVK), Immune protection/antimicrobial response (IFNGR1, LEAP2, ANXA3 and MX1) and Xenobiotic Metabolism Signaling (ALDH6A1, ADH6). In conclusion, the antioxidant-rich leaf extract of T. indica inhibited lipid peroxidation and ROS production, enhanced antioxidant enzyme activities and significantly regulated the expression of genes and proteins involved with consequential impact on the coagulation system, cholesterol biosynthesis, xenobiotic metabolism signaling and antimicrobial response.
    Matched MeSH terms: Reactive Oxygen Species
  3. Muhamad MH, Sheikh Abdullah SR, Abu Hasan H, Abd Rahim RA
    J Environ Manage, 2015 Nov 1;163:115-24.
    PMID: 26311084 DOI: 10.1016/j.jenvman.2015.08.012
    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  4. Oh KS, Poh PE, Chong MN, Chan ES, Lau EV, Saint CP
    Carbohydr Polym, 2016 Sep 05;148:161-70.
    PMID: 27185127 DOI: 10.1016/j.carbpol.2016.04.039
    Polyelectrolyte-complex bilayer membrane (PCBM) was fabricated using biodegradable chitosan and alginate polymers for subsequent application in the treatment of bathroom greywater. In this study, the properties of PCBMs were studied and it was found that the formation of polyelectrolyte network reduced the molecular weight cut-off (MWCO) from 242kDa in chitosan membrane to 2.71kDa in PCBM. The decrease in MWCO of PCBM results in better greywater treatment efficiency, subsequently demonstrated in a greywater filtration study where treated greywater effluent met the household reclaimed water standard of <2 NTU turbidity and <30ppm total suspended solids (TSS). In addition, a further 20% improvement in chemical oxygen demand (COD) removal was achieved as compared to a single layer chitosan membrane. Results from this study show that the biodegradable PCBM is a potential membrane material in producing clean treated greywater for non-potable applications.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  5. Hilles AH, Abu Amr SS, Hussein RA, Arafa AI, El-Sebaie OD
    Water Sci Technol, 2016;73(1):102-12.
    PMID: 26744940 DOI: 10.2166/wst.2015.468
    The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O8(2-), 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  6. Jong VS, Tang FE
    Water Sci Technol, 2015;72(1):84-91.
    PMID: 26114275 DOI: 10.2166/wst.2015.186
    In this study, the treatment of septage (originating from septic tanks) was carried out in a pilot-scale, two-staged, vertical-flow engineered wetland (VFEW). Palm kernel shells (PKS) were incorporated as part of the VFEW's substrate (B-PKS), to compare its organic matter (OM) and nitrogen (N) removal efficiency against wetlands with only sand substrates (B-SD). The results revealed satisfactory OM removal with >90% reduction efficiencies at both wetlands B-PKS and B-SD. No increment of chemical oxygen demand (COD) concentration was observed in the effluent of B-PKS. Ammonia load removal efficiencies were comparable (>91% and 95% in wetland B-PKS and B-SD, respectively). However, nitrate accumulation was observed in the effluent of B-SD where PKS was absent. This was due to the limited denitrification in B-SD, as sand is free of carbon. A lower nitrate concentration was associated with higher COD concentration in the effluent at B-PKS. This study has shown that the use of PKS was effective in improving the N removal efficiency in engineered wetlands.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  7. Kumar GP, Sanganal JS, Phani AR, Manohara C, Tripathi SM, Raghavendra HL, et al.
    Pharmacol Res, 2015 Oct;100:47-57.
    PMID: 26232590 DOI: 10.1016/j.phrs.2015.07.025
    6-Mercaptopurine is a cytotoxic and immunosuppressant drug. The use of this drug is limited due to its poor bioavailability and short plasma half-life. In order to nullify these drawbacks, 6-mercaptopurine-chitosan nanoparticles (6-MP-CNPs) were prepared and evaluated to study the influence of preparation conditions on the physicochemical properties by using DLS, SEM, XRD and FTIR. The in vitro drug release profile at pH 4.8 and 7.4 revealed sustained release patterns for a period of 2 days. The nanoformulations showed enhanced in vitro anti-cancer activities (MTT assay, apoptosis assay, cell cycle arrest and ROS indices) on HT-1080 and MCF-7 cells. In vivo pharmacokinetics profiles of 6-MP-CNPs showed improved bioavailability. Thus, the results of the present study revealed that, the prepared 6-MP-CNPs have a significant role in increasing anti-cancer efficacy, bioavailability and in vivo pharmacokinetics profiles.
    Matched MeSH terms: Reactive Oxygen Species
  8. Kang YL, Ibrahim S, Pichiah S
    Bioresour Technol, 2015;189:364-369.
    PMID: 25913883 DOI: 10.1016/j.biortech.2015.04.044
    PEDOT was synthesized by chemical polymerisation and characterised for its electrochemical insights. Three different anode configuration, namely graphite plate (GP), carbon cloth (CC) and graphite felt (GF) were then loaded with a fixed amount of PEDOT (2.5 mg/m(2)) denoted as GP-P, CC-P and GF-P respectively. The PEDOT coating improved the electrochemical characteristics and electron transfer capabilities of the anodes. They also contributed for enhanced MFC performances with maximum energy generation along with coulombic efficiency than the unmodified anodes. The morphological characteristics like higher surface area and open structure of felt material promoted both microbial formation and electrochemical active area. A maximum current density of 3.5A/m(2) was achieved for GF-P with CE and COD of 51% and 86% respectively. Thus, the GF-P anode excelled among the studied anodes with synergetic effect of PEDOT coating and structural configuration, making it as a potential optimum anode for MFC application.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  9. Sumisha A, Arthanareeswaran G, Lukka Thuyavan Y, Ismail AF, Chakraborty S
    Ecotoxicol Environ Saf, 2015 Nov;121:174-9.
    PMID: 25890841 DOI: 10.1016/j.ecoenv.2015.04.004
    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  10. Ab Halim MH, Nor Anuar A, Azmi SI, Jamal NS, Wahab NA, Ujang Z, et al.
    Bioresour Technol, 2015 Jun;185:445-9.
    PMID: 25851807 DOI: 10.1016/j.biortech.2015.03.024
    With inoculum sludge from a conventional activated sludge wastewater treatment plant, three sequencing batch reactors (SBRs) fed with synthetic wastewater were operated at different high temperatures (30, 40 and 50±1°C) to study the formation of aerobic granular sludge (AGS) for simultaneous organics and nutrients removal with a complete cycle time of 3h. The AGS were successfully cultivated with influent loading rate of 1.6CODg(Ld)(-1). The COD/N ratio of the influent wastewater was 8. The results revealed that granules developed at 50°C have the highest average diameter, (3.36mm) with 98.17%, 94.45% and 72.46% removal efficiency observed in the system for COD, ammonia and phosphate, respectively. This study also demonstrated the capabilities of AGS formation at high temperatures which is suitable to be applied for hot climate conditions.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  11. Crowdy JP, Consolazio CF, Forbes AL, Haisman MF, Worsley DE
    Hum Nutr Appl Nutr, 1982 Oct;36(5):325-44.
    PMID: 7141879
    As part of a research programme concerned with the need to lighten the load carried by soldiers engaged in long foot patrols, a field experiment was undertaken in West Malaysia. For 12 d a group of 15 men consumed 7.4 MJ/d (1770 kcal/d) whilst a control group of 14 men ate 12.9 MJ/d (3080 kcal/d); both groups expended on average about 15.8 MJ/d (3770 kcal/d). The low-energy group incurred an energy deficit of 98 MJ (23 410 kcal) with a weight loss of 3.9 kg, whereas corresponding figures for the control group were 37 MJ (8840 kcal) and 2.4 kg. Before, during and after the energy deprivation phase, assessment was made of work capacity (estimated VO2 max), vigilance and military skills but no difference was found between the groups.
    Matched MeSH terms: Oxygen Consumption
  12. Omar AH, Manan A
    Med J Malaysia, 1989 Sep;44(3):204-9.
    PMID: 2626135
    Six children who survived severe acute bronchiolitis in infancy and early childhood continued to have persistent symptoms of breathlessness, cough and wheeze resistant to bronchodilator therapy. Hyperinflation of the chest, widespread crepitations and rhonchi were persistent clinical features. Failure to thrive was a problem in most. At presentation clinical measles was diagnosed in one child and adenovirus titres were raised in another; the aetiological agents in the others were not known. Lung biopsy from the child with measles showed features of severe bronchiolitis. The clinical and radiological features and course of the illness were consistent with those of bronchiolitis obliterans. Although illness was prolonged the long term prognosis was satisfactory with the majority of children showing improved chest signs, growth and general health after four to eight years of follow up.
    Matched MeSH terms: Oxygen Inhalation Therapy
  13. Liew RP
    Med J Malaysia, 1973 Dec;28(2):94-8.
    PMID: 4276224
    Matched MeSH terms: Oxygen Inhalation Therapy
  14. Duncan M
    Q J Exp Physiol Cogn Med Sci, 1972 Jul;57(3):247-56.
    PMID: 4483129
    Matched MeSH terms: Oxygen Consumption
  15. Urban John Arnold D’Souza, Vinod Kumar S., Nagesh Chodankar
    MyJurnal
    Introduction: Regular physical activity and VO2 max are correlated directly. Physical anthropometry physical ac-tivity, lung function and cardiac parameters such as systolic, diastolic blood pressure and resting heart rate are the important baseline parameters in relation to the a healthy life. In this study, a comprehensive determination of these parameters were planned among the common ethnicities of Sabah. This study in turn aims at making the sedentary people to make physically active and implicate a possible relationship between cardio-respiratory parameters with the physical activity levels. Methods: A total of 385 young adult Sabah, Malaysia college students with n=148 males and n= 237 females were randomly selected from the different colleges in Kota Kinabalu. Ethical clearance was received from Faculty of Medicine & Health Sciences UMS, and the participants were briefed on the procedures with their voluntary consent. IPAQ-Score/Met-Min/Week, BMI, resting heart rate, blood pressure, lung function parameters – forced vital capacity, peak expiratory flow rate etc were estimated by standard techniques. Data was analyzed, a regression analysis and ANOVA was performed to assess the relationship between independent and dependent variables. Results: Physical activity level has a significant correlation with the dependent variables of this study. VO2max is significantly and inversely related to body weight, BMI, blood pressure and pulse rate, whereas physical activity level is directly correlated. A weak positive correlation for VO2 max with lung function parameters.Conclusion: Physical activity, VO2 max and cardio-respiratory parameters; interdependently correlated and regular activity contributed to the rate of oxygen consumption.
    Matched MeSH terms: Oxygen Consumption
  16. Aboul-Soud MAM, Ashour AE, Challis JK, Ahmed AF, Kumar A, Nassrallah A, et al.
    Plants (Basel), 2020 Sep 30;9(10).
    PMID: 33008079 DOI: 10.3390/plants9101295
    Organic fractions and extracts of willow (Salix safsaf) leaves, produced by sequential solvent extraction as well as infusion and decoction, exhibited anticancer potencies in four cancerous cell lines, including breast (MCF-7), colorectal (HCT-116), cervical (HeLa) and liver (HepG2). Results of the MTT assay revealed that chloroform (CHCl3) and ethyl acetate (EtOAc)-soluble fractions exhibited specific anticancer activities as marginal toxicities were observed against two non-cancerous control cell lines (BJ-1 and MCF-12). Ultra-high-resolution mass spectrometry Q-Exactive™ HF Hybrid Quadrupole-Orbitrap™ coupled with liquid chromatography (UHPLC) indicated that both extracts are enriched in features belonging to major phenolic and purine derivatives. Fluorescence-activated cell sorter analysis (FACS), employing annexin V-FITC/PI double staining indicated that the observed cytotoxic potency was mediated via apoptosis. FACS analysis, monitoring the increase in fluorescence signal, associated with oxidation of DCFH to DCF, indicated that the mechanism of apoptosis is independent of reactive oxygen species (ROS). Results of immunoblotting and RT-qPCR assays showed that treatment with organic fractions under investigation resulted in significant up-regulation of pro-apoptotic protein and mRNA markers for Caspase-3, p53 and Bax, whereas it resulted in a significant reduction in amounts of both protein and mRNA of the anti-apoptotic marker Bcl-2. FACS analysis also indicated that pre-treatment and co-treatment of human amniotic epithelial (WISH) cells exposed to the ROS H2O2 with EtOAc fraction provide a cytoprotective and antioxidant capacity against generated oxidative stress. In conclusion, our findings highlight the importance of natural phenolic and flavonoid compounds with unparalleled and unique antioxidant and anticancer properties.
    Matched MeSH terms: Reactive Oxygen Species
  17. Ooi KS, Haszman S, Wong YN, Soidin E, Hesham N, Mior MAA, et al.
    Materials (Basel), 2020 Sep 30;13(19).
    PMID: 33007893 DOI: 10.3390/ma13194352
    The eminent aim for advance wound management is to provide a great impact on the quality of life. Therefore, an excellent strategy for an ideal wound dressing is being developed that eliminates certain drawbacks while promoting tissue regeneration for the prevention of bacterial invasion. The aim of this study is to develop a bilayer hybrid biomatrix of natural origin for wound dressing. The bilayer hybrid bioscaffold was fabricated by the combination of ovine tendon collagen type I and palm tree-based nanocellulose. The fabricated biomatrix was then post-cross-linked with 0.1% (w/v) genipin (GNP). The physical characteristics were evaluated based on the microstructure, pore size, porosity, and water uptake capacity followed by degradation behaviour and mechanical strength. Chemical analysis was performed using energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectrophotometry (FTIR), and X-ray diffraction (XRD). The results demonstrated a uniform interconnected porous structure with optimal pore size ranging between 90 and 140 μm, acceptable porosity (>70%), and highwater uptake capacity (>1500%). The biodegradation rate of the fabricated biomatrix was extended to 22 days. Further analysis with EDX identified the main elements of the bioscaffold, which contains carbon (C) 50.28%, nitrogen (N) 18.78%, and oxygen (O) 30.94% based on the atomic percentage. FTIR reported the functional groups of collagen type I (amide A: 3302 cm-1, amide B: 2926 cm-1, amide I: 1631 cm-1, amide II: 1547 cm-1, and amide III: 1237 cm-1) and nanocellulose (pyranose ring), thus confirming the presence of collagen and nanocellulose in the bilayer hybrid scaffold. The XRD demonstrated a smooth wavy wavelength that is consistent with the amorphous material and less crystallinity. The combination of nanocellulose with collagen demonstrated a positive effect with an increase of Young's modulus. In conclusion, the fabricated bilayer hybrid bioscaffold demonstrated optimum physicochemical and mechanical properties that are suitable for skin wound dressing.
    Matched MeSH terms: Oxygen
  18. Kamal H, Tan GC, Ibrahim SF, Shaikh MF, Mohamed IN, Mohamed RMP, et al.
    Front Cell Neurosci, 2020;14:282.
    PMID: 33061892 DOI: 10.3389/fncel.2020.00282
    Alcohol use disorder (AUD) has been associated with neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Prolonged excessive alcohol intake contributes to increased production of reactive oxygen species that triggers neuroimmune response and cellular apoptosis and necrosis via lipid peroxidation, mitochondrial, protein or DNA damage. Long term binge alcohol consumption also upregulates glutamate receptors, glucocorticoids and reduces reuptake of glutamate in the central nervous system, resulting in glutamate excitotoxicity, and eventually mitochondrial injury and cell death. In this review, we delineate the following principles in alcohol-induced neurodegeneration: (1) alcohol-induced oxidative stress, (2) neuroimmune response toward increased oxidants and lipopolysaccharide, (3) glutamate excitotoxicity and cell injury, and (4) interplay between oxidative stress, neuroimmune response and excitotoxicity leading to neurodegeneration and (5) potential chronic alcohol intake-induced development of neurodegenerative diseases, including Alzheimer's and Parkinson's disease.
    Matched MeSH terms: Reactive Oxygen Species
  19. Sarkar P, Lite C, Kumar P, Pasupuleti M, Saraswathi NT, Arasu MV, et al.
    Int J Biol Macromol, 2020 Oct 31.
    PMID: 33137391 DOI: 10.1016/j.ijbiomac.2020.10.222
    The antioxidant role of sulfite reductase (SiR) derived from Arthrospira platensis (Ap) was identified through a short peptide, TL15. The study showed that the expression of ApSiR was highly expressed on day ten due to sulfur deprived stress in Ap culture. TL15 peptide exhibited strong antioxidant activity when evaluated using antioxidant assays in a concentration ranging from 7.8 and 125 μM. Further, the cytotoxicity of TL15 peptide was investigated, even at the higher concentration (250 μM), TL15 did not exhibit any toxicity, when tested in vitro using human leucocytes. Moreover, a potential reduction in reactive oxygen species (ROS) production was observed due to the treatment of TL15 peptide (>15.6 μM) to H2O2 exposed leucocytes. For the in vivo assessment of TL15 toxicity and antioxidant ability, experiments were performed in zebrafish (Danio rerio) larvae to analyse the developmental toxicity of TL15 peptide. Results showed that, exposure to TL15 peptide in tested concentrations ranging from 10, 20, 40, and 80 μM, did not affect the development and physiological parameters of the zebrafish embryo/larvae such as morphology, survival, hatching and heart rate. Fluorescent assay was performed using DCFH-DA (2,7-dichlorodihydrofluorescein diacetate) to examine the production of intracellular reactive oxygen species (ROS) in zebrafish treated with TL15 peptide during the embryo-larval stages. Fluorescent images showed that pre-treatment with TL15 peptide to attenuate the H2O2 induced ROS levels in the zebrafish larvae in a dose-dependent manner. Further to uncover the underlying biochemical and antioxidant mechanism, the enzyme activity of superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) levels were studied in zebrafish larvae. TL15 pre-treated groups showed enhanced antioxidant enzyme activity, while the hydrogen peroxide (H2O2) exposed larvae showed significantly diminished activity. Overall results from the study revealed that, TL15 act as a potential antioxidant molecule with dose-specific antioxidant property. Thus, TL15 peptide could be an effective and promising source for biopharmaceutical applications.
    Matched MeSH terms: Reactive Oxygen Species
  20. Singh A, Panda K, Mishra J, Dash A
    Malays Orthop J, 2020 Nov;14(3):129-136.
    PMID: 33403073 DOI: 10.5704/MOJ.2011.020
    Introduction: The incidence of compound fractures and severe soft tissue loss has increased manifolds due to high speed traffics. Negative Pressure Wound Therapy (NPWT) is a treatment modality for managing soft tissue aspect of such injuries. It reduces the need of flap coverage. However, many patients from developing countries cannot afford a conventional NPWT. We developed an indigenous low cost NPWT for our patients and supplemented it with Topical Pressurised Oxygen Therapy (TPOT). We conducted this study to compare its treatment outcome with the use of conventional NPWT.

    Materials and Methods: The study was conducted from 2018 to 2020 at a tertiary care teaching hospital. A total of 86 patients were treated with NPWT and their results were assessed for various parameters like reduction in wound size, discharge, infection, etc. We included patients with acute traumatic wounds as well as chronic infected wounds, and placed them in three treatment groups to receive either conventional NPWT, Indigenous NPWT and lastly NPWT with supplement TPOT.

    Results: We observed a significant reduction of wound size, discharge and infection control in all three groups. The efficacy of indigenous NPWT is at par with conventional NPWT. Only six patients who had several comorbidities required flap coverage while in another four patients we could not achieve desired result due to technical limitations.

    Conclusion: Indigenous NPWT with added TPOT is a very potent and cost effective method to control infection and rapid management of severe trauma seen in orthopaedic practice. It also decreases the dependency on plastic surgeons for management of such wounds.

    Matched MeSH terms: Oxygen
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links