METHODS: Female Sprague-Dawley rats were ovariectomized and received 3-days estradiol-17β benzoate (E2) plus genistein (25, 50, or 100 mg kg(-1) day(-1) ) or 3-days E2 followed by 3-days E2 plus progesterone with genistein (25, 50, or 100 mg kg(-1) day(-1) ). A day after last treatment, uterine fluid secretion rate was determined by in vivo uterine perfusion with rats under anesthesia. Animals were sacrificed and uteri were harvested and subjected for histological analyses. Luminal/outer uterine circumference was determined and distribution of AQP-1, 2, 5, and 7 in endometrium was visualized by immunofluorescence. Expression of AQP-1, 2, 5, and 7 proteins and mRNAs were determined by Western blotting and Real-time PCR respectively.
RESULTS: Combined treatment of E2 with high dose genistein (50 and 100 mg kg(-1) day(-1) ) resulted in significant decrease in uterine fluid volume, secretion rate and expression of AQP-1, 2, 5, and 7 proteins and mRNAs in uterus (p
METHODS: Thirty-two female Sprague Dawley rats at age 21-days old were administered intraperitoneally with N-Methyl-N-Nitroso Urea (NMU), dosed at 70mg/kg body weight. The rats were divided into 4 groups; Group 1 (Control, n=8), Group 2 (Sirolimus, n=8), Group 3 (Sunitinib, n=8) and Group 4 (Sirolimus+Sunitinib, n=8), being treated twice when the tumor reached the size of 14.5±0.5 mm and subsequently sacrificed after 5 days. The protein expressions of ER, PgR and HER2/neu of the tumor tissues were evaluated by using immunohistochemistry analysis.
RESULTS: Treatment with sirolimus alone lowered expressions of ER and PgR of breast cancer and reduced tumor size. There was no significant difference of ER and PgR expressions between control and sunitinib treated tumor. Sunitinib treated tumors reduce in diameter after the first treatment, however the diameter increases after the second treatment. Histologically, sunitinib treated tumor did not show any aggressive invasive carcinoma of no special type (NST) histological subtypes. In addition, all NMU-induced tumors are HER2/neu-negative scoring.
CONCLUSION: Sirolimus is neither synergistic nor additive with sunitinib for breast cancer treatment.
.
OBJECTIVES: The present study was performed to investigate the discriminative stimulus effects of MG in rats. The pharmacological mechanism of MG action and its derivative, 7-hydroxymitragynine (7-HMG) with a specific focus on opioid receptor involvement was examined in rats trained to discriminate morphine from vehicle. In order to study the dual actions of MG, the effect of cocaine substitution to the MG discriminative stimulus was also performed in MG-trained rats.
METHODS: Male Sprague Dawley rats were trained to discriminate MG from vehicle in a two-lever drug discrimination procedure under a tandem variable-interval (VI 60') fixed-ratio (FR 10) schedule of food reinforcement.
RESULTS: Rats acquired the MG discrimination (15.0 mg/kg, i.p.) which was similar to the acquisition of morphine discrimination (5.0 mg/kg, i.p.) in another group of rats. MG substituted fully to the morphine discriminative stimulus in a dose-dependent manner, suggesting pharmacological similarities between the two drugs. The administration of 7-HMG derivative in 3.0 mg/kg (i.p.) dose engendered full generalisation to the morphine discriminative stimulus. In addition, the MG stimulus also partially generalised to cocaine (10.0 mg/kg, i.p.) stimulus.
CONCLUSION: The present study demonstrates that the discriminative stimulus effect of MG possesses both opioid- and psychostimulant-like subjective effects.
OBJECTIVES: This study examined the dependence-producing effects of MG using operant-scheduled behaviour in rats and investigated the potential therapeutic effect of MG by comparing effects to buprenorphine in morphine-dependent rats using the same schedule-controlled behavioural task.
METHODS: The effects of acutely administered MG and morphine were determined in rats trained to respond under fixed-ratio (FR) 10 schedule of food reinforcement. Next, the rats were administered MG and morphine twice daily for 14 consecutive days to determine if physiological dependence would develop by examining cessation of drug treatment and following antagonist-precipitated withdrawal. The study then examined the effects of MG substitution to suppress naloxone-precipitated morphine withdrawal effects on scheduled responding.
RESULTS: Acute doses of MG did not produce dose-related decreases on FR schedules of responding compared to morphine. Unlike morphine, MG-treated rats showed no suppression of response rates following cessation of MG treatment. However, withdrawal effects were evident for MG after precipitation by either naloxone or SR141716A (rimonabant), similar to morphine-treated rats. MG in higher doses (10 and 30 mg/kg) attenuated the naloxone-precipitated morphine withdrawal effects while smaller doses of buprenorphine (0.3 and 1.0 mg/kg) were necessary to alleviate these effects.
CONCLUSION: The findings suggest that MG does not induce physiological dependence but can alleviate the physical symptoms associated with morphine withdrawal which represent the desired characteristics of novel pharmacotherapeutic interventions for managing opioid use disorder (OUD).