Displaying publications 881 - 900 of 4601 in total

Abstract:
Sort:
  1. Spooner R, Bird JM, Irigoras Izagirre N, Clemente R, Fernandez Fueyo E, Budworth G, et al.
    Psychophysiology, 2024 Dec;61(12):e14689.
    PMID: 39323015 DOI: 10.1111/psyp.14689
    Previous evidence suggests males and females differ with respect to interoception-the processing of internal bodily signals-with males typically outperforming females on tasks of interoceptive accuracy. However, interpretation of existing evidence in the cardiac domain is hindered by the limitations of existing tools. In this investigation, we pooled data from several samples to examine sex differences in cardiac interoceptive accuracy on the phase adjustment task, a new measure that overcomes several limitations of the existing tools. In a sample of 266 individuals, we observed that females outperformed males, indicative of better cardiac interoceptive accuracy, but had lower confidence than males. These results held after controlling for sex differences in demographic, physiological and engagement factors. Importantly, these results were specific to the measure of cardiac interoceptive accuracy. No sex differences were observed for individuals who completed the structurally identical screener task, although a similar pattern of results was observed in relation to confidence. These surprising data suggest the presence of a female advantage for cardiac interoceptive accuracy and potential differences in interoceptive awareness (metacognition). Possible reasons for mixed results in the literature, as well as implications for theory and future research, are discussed.
    Matched MeSH terms: Metacognition/physiology
  2. Nirenjen S, Narayanan J, Tamilanban T, Subramaniyan V, Chitra V, Fuloria NK, et al.
    Front Immunol, 2023;14:1216321.
    PMID: 37575261 DOI: 10.3389/fimmu.2023.1216321
    BACKGROUND: Impaired wound healing is the most common and significant complication of Diabetes. While most other complications of Diabetes have better treatment options, diabetic wounds remain a burden as they can cause pain and suffering in patients. Wound closure and repair are orchestrated by a sequence of events aided by the release of pro-inflammatory cytokines, which are dysregulated in cases of Diabetes, making the wound environment unfavorable for healing and delaying the wound healing processes. This concise review provides an overview of the dysregulation of pro-inflammatory cytokines and offers insights into better therapeutic outcomes.

    PURPOSE OF REVIEW: Although many therapeutic approaches have been lined up nowadays to treat Diabetes, there are no proper treatment modalities proposed yet in treating diabetic wounds due to the lack of understanding about the role of inflammatory mediators, especially Pro-inflammatory mediators- Cytokines, in the process of Wound healing which we mainly focus on this review.

    RECENT FINDINGS: Although complications of Diabetes mellitus are most reported after years of diagnosis, the most severe critical complication is impaired Wound Healing among Diabetes patients. Even though Trauma, Peripheral Artery Disease, and Peripheral Neuropathy are the leading triggering factors for the development of ulcerations, the most significant issue contributing to the development of complicated cutaneous wounds is wound healing impairment. It may even end up with amputation. Newer therapeutic approaches such as incorporating the additives in the present dressing materials, which include antimicrobial molecules and immunomodulatory cytokines is of better therapeutic value.

    SUMMARY: The adoption of these technologies and the establishment of novel therapeutic interventions is difficult since there is a gap in terms of a complete understanding of the pathophysiological mechanisms at the cellular and molecular level and the lack of data in terms of the assessment of safety and bioavailability differences in the individuals' patients. The target-specific pro-inflammatory cytokines-based therapies, either by upregulation or downregulation of them, will be helpful in the wound healing process and thereby enhances the Quality of life in patients, which is the goal of drug therapy.

    Matched MeSH terms: Wound Healing/physiology
  3. Mustapha S, Mohammed M, Azemi AK, Yunusa I, Shehu A, Mustapha L, et al.
    Oxid Med Cell Longev, 2021;2021:8830880.
    PMID: 33995826 DOI: 10.1155/2021/8830880
    The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER stress, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.
    Matched MeSH terms: Endoplasmic Reticulum Stress/physiology*
  4. Zakry FA, Shamsuddin ZH, Abdul Rahim K, Zawawi Zakaria Z, Abdul Rahim A
    Microbes Environ, 2012;27(3):257-62.
    PMID: 22446306
    There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N₂ fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the ¹⁵N isotope dilution method. Eight months after ¹⁵N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower ¹⁵N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N₂ fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field.
    Matched MeSH terms: Bacillus/physiology
  5. Abdul Rahim A, Idris MH, Kamal AH, Wong SK, Arshad A
    Pak J Biol Sci, 2012 Jul 01;15(13):629-34.
    PMID: 24218932
    The Condition Index (CI) is a method to measure overall health of fish and that has been applied to estimate the effect that different environmental factors have on clam meat quality. The CI of local mangrove clam Polymesoda expansa in Kelulit, Miri Sarawak was determined from October 2010 to November 2011. Condition index that is generally used to characterize the physiological activity of organisms, varied from 1.8% in December 2010 to 3.4% in October 2011, with low values observed during the spawning period. The clam attained their best condition in quality of flesh weight during July-October. In present study, the CI showed a clear relationship with the reproductive cycle of P. expansa. However, no significant correlation (p > 0.05) was found between CI and the different physicochemical parameter of seawater. The data presented is necessary for developing sustainable management strategies and broodstock selection for the species which is crucial in aquaculture development.
    Matched MeSH terms: Bivalvia/physiology*
  6. Tan AN, Christianus A, Shakibazadeh S, Hajeb P
    Pak J Biol Sci, 2012 Jul 01;15(13):610-20.
    PMID: 24218930
    Local and regional decline of Asian horseshoe crabs has spurred a study on its spawning population at Balok Beach, Kuantan, Pahang, Malaysia. This location was identified as spawning site due to the occurrence of horseshoe crab spawning pairs and nests. Size-frequency, length-weight relationships, sex ratio and epibiont infestation of Tachypleus gigas were studied. Instar stage was estimated based on prosomal width. Condition of the horseshoe crab carapace was reported. Visual search technique of horseshoe crab was conducted during high tide of new and full moons. Prosomal, opisthosomal and telson length and weight of each horseshoe crab were measured. Largest female was recorded with mean prosomal length and width of 154.4 and 246.9 mm, respectively. About 69.8% of the males belonged to size group of 151-200 mm and 53.3% of females were grouped into 201-250 mm. All individuals were of fourteenth to sixteenth instar stages. Sex ratio varied from 0.313 to 2.5 and attributed to commercial harvest and monsoon season. Sand sediment of study site showed 93% of fine sands with grain size ranged from 120 to 250 microm. Acorn and pedunculate barnacle, conical and flat slipper shells were found on the carapace of the specimens. Most males had damaged eyes and carapaces while females with broken telsons. Body damages of about 19.9% on the specimens were likely due to nearby fishing activities. Lack of satellite male indicated low spawning population. The finding of this study showed that the species is extremely threatened by human activities and coastal development.
    Matched MeSH terms: Horseshoe Crabs/physiology*
  7. Zakaria MH, Amin SM, Rahman MA, Arshad A, Christianus A, Siraj SS
    Pak J Biol Sci, 2012 Jul 01;15(13):604-9.
    PMID: 24218929
    The freshwater fish, Probarbus jullieni (Sauvage), locally referred to as "Temoleh", is a high-valued freshwater fish in Malaysia and has both cultural and conservational significance. It is widely distributed in the North-east Asian countries such as Thailand, Cambodia, Vietnam and Malaysia. During the recent past, the natural stocks of P. jullieni have been decreased severely due to habitat degradation and man-induced hazards in aquatic ecosystem. Despite the vast research that has been conducted on various carp species, little attention has been given to P. jullieni. This study reviewed the published information on the status, distribution, reproduction and biodiversity of this commercially important fish species. The findings would greatly be helpful towards the species conservation and aquaculture development of the highly endangered P. jullieni.
    Matched MeSH terms: Cyprinidae/physiology*
  8. Wang Y, Shi J, Xu YJ, Tan CP, Liu Y
    Food Chem, 2024 Apr 16;438:137400.
    PMID: 38039864 DOI: 10.1016/j.foodchem.2023.137400
    The digestion behavior of lipids plays a crucial role in their nutritional bioaccessibility, which subsequently impacts human health. This study aims to investigate potential variations in lipid digestion profiles among individuals of different ages, considering the distinct physiological functions of the gastrointestinal tract in infants, aging populations, and healthy young adults. The digestion fates of high oleic peanut oil (HOPO), sunflower oil (SO), and linseed oil (LINO) were investigated using in vitro digestion models representing infants, adults, and elders. Comparatively, lipid digestion proved to be more comprehensive in adults, leading to free fatty acid (FFA) levels of 64.53%, 62.32%, and 57.90% for HOPO, SO, and LINO, respectively. Besides, infants demonstrated propensity to selectively release FFAs with shorter chain lengths and higher saturation levels during the digestion. In addition, in the gastric phase, particle sizes among the elderly were consistently larger than those observed in infants and adults, despite adults generating approximately 15% FFAs within the stomach. In summary, this study enhances our fundamental comprehension of how lipids with varying degrees of unsaturation undergo digestion in diverse age groups.
    Matched MeSH terms: Digestion/physiology
  9. Dutra NB, Chen L, Anum A, Burger O, Davis HE, Dzokoto VA, et al.
    Dev Sci, 2022 Sep;25(5):e13228.
    PMID: 35025126 DOI: 10.1111/desc.13228
    Self-regulation is a widely studied construct, generally assumed to be cognitively supported by executive functions (EFs). There is a lack of clarity and consensus over the roles of specific components of EFs in self-regulation. The current study examines the relations between performance on (a) a self-regulation task (Heads, Toes, Knees Shoulders Task) and (b) two EF tasks (Knox Cube and Beads Tasks) that measure different components of updating: working memory and short-term memory, respectively. We compared 107 8- to 13-year-old children (64 females) across demographically-diverse populations in four low and middle-income countries, including: Tanna, Vanuatu; Keningau, Malaysia; Saltpond, Ghana; and Natal, Brazil. The communities we studied vary in market integration/urbanicity as well as level of access, structure, and quality of schooling. We found that performance on the visuospatial working memory task (Knox Cube) and the visuospatial short-term memory task (Beads) are each independently associated with performance on the self-regulation task, even when controlling for schooling and location effects. These effects were robust across demographically-diverse populations of children in low-and middle-income countries. We conclude that this study found evidence supporting visuospatial working memory and visuospatial short-term memory as distinct cognitive processes which each support the development of self-regulation.
    Matched MeSH terms: Memory, Short-Term/physiology
  10. Aliyu IA, Kumurya AS, Bala JA, Yahaya H, Saidu H
    Rev Med Virol, 2021 Sep;31(5):1-9.
    PMID: 33314425 DOI: 10.1002/rmv.2202
    Filopodia are thin finger-like protrusions at the surface of cells that are internally occupied with bundles of tightly parallel actin filaments. They play significant roles in cellular physiological processes, such as adhesion to extracellular matrix, guidance towards chemo-attractants and in wound healing. Filopodia were recently reported to play important roles in viral infection including initial viral attachment to host cells, cell surfing, viral trafficking, internalization, budding, virus release and spread to other cells in a form that would avoid the host immune system. The detailed virus-host protein interactions underlying most of these processes remain to be elucidated. This review will describe some reported virus-host protein interactions on filopodia with the aim of identifying potential new anti-virus therapeutic targets. Exploring this research area may lead to the development of novel classes of anti-viral therapeutics that can block signalling pathways used by the virus to trigger filopodia formation. Successful compounds would inhibit initial virus attachment, formation of filopodia, expression of putative virus binding protein, extracellular virus trafficking, and budding.
    Matched MeSH terms: Pseudopodia/physiology
  11. Azman KF, Zakaria R
    Int J Mol Sci, 2022 Jun 19;23(12).
    PMID: 35743271 DOI: 10.3390/ijms23126827
    Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are essential for neuronal survival and growth. The signaling cascades initiated by BDNF and its receptor are the key regulators of synaptic plasticity, which plays important role in learning and memory formation. Changes in BDNF levels and signaling pathways have been identified in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, and have been linked with the symptoms and course of these diseases. This review summarizes the current understanding of the role of BDNF in several neurodegenerative diseases, as well as the underlying molecular mechanism. The therapeutic potential of BDNF treatment is also discussed, in the hope of discovering new avenues for the treatment of neurodegenerative diseases.
    Matched MeSH terms: Neuronal Plasticity/physiology
  12. Eriksson H, de la Torre-Castro M, Purcell SW, Olsson P
    Ambio, 2015 Apr;44(3):204-13.
    PMID: 25238980 DOI: 10.1007/s13280-014-0552-5
    Small-scale fisheries present challenges to management due to fishers' dependency on resources and the adaptability of management systems. We compared social-ecological processes in the sea cucumber fisheries of Zanzibar and Mayotte, Western Indian Ocean, to better understand the reasons for resource conservation or collapse. Commercial value of wild stocks was at least 30 times higher in Mayotte than in Zanzibar owing to lower fishing pressure. Zanzibar fishers were financially reliant on the fishery and increased fishing effort as stocks declined. This behavioral response occurred without adaptive management and reinforced an unsustainable fishery. In contrast, resource managers in Mayotte adapted to changing fishing effort and stock abundance by implementing a precautionary fishery closure before crossing critical thresholds. Fishery closure may be a necessary measure in small-scale fisheries to preserve vulnerable resources until reliable management systems are devised. Our comparison highlighted four poignant lessons for managing small-scale fisheries: (1) diagnose the fishery regularly, (2) enable an adaptive management system, (3) constrain exploitation within ecological limits, and (4) share management responsibility.
    Matched MeSH terms: Sea Cucumbers/physiology*
  13. Hall JMM, Nguyen TV, Dinsmore AW, Perugini D, Perugini M, Fukunaga N, et al.
    Reprod Biomed Online, 2024 Dec;49(6):104403.
    PMID: 39433005 DOI: 10.1016/j.rbmo.2024.104403
    RESEARCH QUESTION: Can federated learning be used to develop an artificial intelligence (AI) model for evaluating oocyte competence using two-dimensional images of denuded oocytes in metaphase II prior to intracytoplasmic sperm injection (ICSI)?

    RESULTS: The oocyte AI model demonstrated area under the curve (AUC) up to 0.65 on two blind test datasets. High sensitivity for predicting competent oocytes (83-88%) was offset by lower specificity (26-36%). Exclusion of confounding biological variables (male factor infertility and maternal age ≥35 years) improved AUC up to 14%, primarily due to increased specificity. AI score correlated with size of the zona pellucida and perivitelline space, and ooplasm appearance. AI score also correlated with blastocyst expansion grade and morphological quality. The sum of AI scores from oocytes in group culture images predicted the formation of two or more usable blastocysts (AUC 0.77).

    CONCLUSION: An AI model to evaluate oocyte competence was developed using federated learning, representing an essential step in protecting patient data. The AI model was significantly predictive of oocyte competence, as defined by usable blastocyst formation, which is a critical factor for IVF success. Potential clinical utility ranges from selective oocyte fertilization to guiding treatment decisions regarding additional rounds of oocyte retrieval.

    DESIGN: In total, 10,677 oocyte images with associated metadata were collected prospectively by eight IVF clinics across six countries. AI training used federated learning, where data were retained on regional servers to comply with data privacy laws. The final AI model required a single image as input to evaluate oocyte competence, which was defined by the formation of a usable blastocyst (≥expansion grade 3 by day 5 or 6 post ICSI).

    Matched MeSH terms: Embryonic Development/physiology
  14. Chia TW, Nguyen VT, McMeekin T, Fegan N, Dykes GA
    Appl Environ Microbiol, 2011 Jun;77(11):3757-64.
    PMID: 21478319 DOI: 10.1128/AEM.01415-10
    Bacterial attachment onto materials has been suggested to be stochastic by some authors but nonstochastic and based on surface properties by others. We investigated this by attaching pairwise combinations of two Salmonella enterica serovar Sofia (S. Sofia) strains (with different physicochemical and attachment properties) with one strain each of S. enterica serovar Typhimurium, S. enterica serovar Infantis, or S. enterica serovar Virchow (all with similar physicochemical and attachment abilities) in ratios of 0.428, 1, and 2.333 onto glass, stainless steel, Teflon, and polysulfone. Attached bacterial cells were recovered and counted. If the ratio of attached cells of each Salmonella serovar pair recovered was the same as the initial inoculum ratio, the attachment process was deemed stochastic. Experimental outcomes from the study were compared to those predicted by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. Significant differences (P < 0.05) between the initial and the attached ratios for serovar pairs containing S. Sofia S1296a for all different ratios were apparent for all materials. For S. Sofia S1635-containing pairs, 7 out of 12 combinations of serovar pairs and materials had attachment ratios not significantly different (P > 0.05) from the initial ratio of 0.428. Five out of 12 and 10 out of 12 samples had attachment ratios not significantly different (P > 0.05) from the initial ratios of 1 and 2.333, respectively. These results demonstrate that bacterial attachment to different materials is likely to be nonstochastic only when the key physicochemical properties of the bacteria were significantly different (P < 0.05) from each other. XDLVO theory could successfully predict the attachment of some individual isolates to particular materials but could not be used to predict the likelihood of stochasticity in pairwise attachment experiments.
    Matched MeSH terms: Salmonella enterica/physiology*
  15. Muzammil AN, Barathan M, Yazid MD, Sulaiman N, Makpol S, Mohamed Ibrahim N, et al.
    Front Endocrinol (Lausanne), 2024;15:1406531.
    PMID: 39398330 DOI: 10.3389/fendo.2024.1406531
    Phoenixin (PNX) is an emerging neuropeptide that plays a significant role in regulating metabolism and reproduction. This comprehensive review examines findings from human, in vivo, and in vitro studies to elucidate the functions of PNX in metabolic processes. PNX has been identified as a key player in essential metabolic pathways, including energy homeostasis, glucose, lipid and electrolyte metabolism, and mitochondrial dynamics. It modulates food and fluid intake, influences glucose and lipid profiles, and affects mitochondrial biogenesis and function. PNX is abundantly expressed in the hypothalamus, where it plays a crucial role in regulating reproductive hormone secretion and maintaining energy balance. Furthermore, PNX is also expressed in peripheral tissues such as the heart, spleen, and pancreas, indicating its involvement in the regulation of metabolism across central and peripheral systems. PNX is a therapeutic peptide that operates through the G protein-coupled receptor 173 (GPR173) at the molecular level. It activates signaling pathways such as cAMP-protein kinase A (PKA) and Epac-ERK, which are crucial for metabolic regulation. Research suggests that PNX may be effective in managing metabolic disorders like obesity and type 2 diabetes, as well as reproductive health issues like infertility. Since metabolic processes are closely linked to reproduction, further understanding of PNX's role in these areas is necessary to develop effective management/treatments. This review aims to highlight PNX's involvement in metabolism and identify gaps in current knowledge regarding its impact on human health. Understanding the mechanisms of PNX's action is crucial for the development of novel therapeutic strategies for the treatment of metabolic disorders and reproductive health issues, which are significant public health concerns globally.
    Matched MeSH terms: Reproduction/physiology
  16. Ibrahim SM, Muhammad L, Yunus RB, Waziri MY, Kamaruddin SBA, Sambas A, et al.
    PLoS One, 2025;20(1):e0317318.
    PMID: 39854395 DOI: 10.1371/journal.pone.0317318
    Conjugate Gradient (CG) methods are widely used for solving large-scale nonlinear systems of equations arising in various real-life applications due to their efficiency in employing vector operations. However, the global convergence analysis of CG methods remains a significant challenge. In response, this study proposes scaled versions of CG parameters based on the renowned Barzilai-Borwein approach for solving convex-constrained monotone nonlinear equations. The proposed algorithms enforce a sufficient descent property independent of the accuracy of the line search procedure and ensure global convergence under appropriate assumptions. Numerical experiments demonstrate the efficiency of the proposed methods in solving large-scale nonlinear systems, including their applicability to accurately solving the inverse kinematic problem of a 3DOF robotic manipulator, where the objective is to minimize the error in achieving a desired trajectory configuration.
    Matched MeSH terms: Arm/physiology
  17. Montalvo S, Gonzalez MP, Dietze-Hermosa MS, Martinez A, Rodriguez S, Gomez M, et al.
    J Strength Cond Res, 2025 Feb 01;39(2):173-183.
    PMID: 39446677 DOI: 10.1519/JSC.0000000000004937
    Montalvo, S, Gonzalez, MP, Dietze-Hermosa, MS, Martinez, A, Rodriguez, S, Gomez, M, Ibarra-Mejia, G, Tan, E, and Dorgo, S. Effects of different stretching modalities on the antagonist and agonist muscles on isokinetic strength and vertical jump performance in young men. J Strength Cond Res 39(2): 173-183, 2025-Exercise warm-up may include static or dynamic stretching, impacting performance differently. This study investigated the effects of various stretching protocols on isokinetic strength, muscular activity, and vertical jump performance. Sixteen subjects, divided evenly between trained and untrained groups, underwent 8 distinct stretching conditions in random order. Outcomes measured included isokinetic knee extension and flexion torque and power, muscular activity (vastus lateralis, vastus medialis, and biceps femoris), and jump performance (jump height and modified reactive strength index [RSImod]). Responses to the stretching conditions were analyzed using a mixed-methods approach. For isokinetic knee extension, dynamic stretching of both agonist and antagonist (DY-AG-ANT) and combined dynamic agonist with static antagonist stretching (DY-AG ST-ANT) produced significant improvements. Dynamic stretching of both agonist and antagonist increased peak torque by 12.72% and average torque by 30.80%, while DY-AG ST-ANT increased peak torque by 15.61% and average torque by 41.06%. Muscular activity also improved significantly; DY-AG ST-ANT increased EMG activity of the vastus lateralis by 29.43% and vastus medialis by 70.75%. Biceps femoris saw a 33.18% increase with DY-AG and a 22.15% increase with ST-AG. Countermovement jump height improved with DY-AG-ANT (12.6%) and static antagonist (ST-ANT) conditions (11.3%) ( p < 0.05). Dynamic stretching of both agonist and antagonist also enhanced average power knee extension by 32.41%, while ST-AG DY-ANT improved it by 31.09% ( p < 0.05). Dynamic stretching, especially when combined with static stretching, optimizes isokinetic strength, muscular activity, and jump height. Coaches should incorporate dynamic stretching, alone or with static antagonist stretching, to maximize performance.
    Matched MeSH terms: Muscle, Skeletal/physiology
  18. Ma W, Liu Y, Yi Q, Liu X, Xing W, Zhao R, et al.
    PLoS One, 2025;20(2):e0317839.
    PMID: 39946390 DOI: 10.1371/journal.pone.0317839
    Table tennis is one of the most popular sports in the world, and it plays a positive role in the overall development of people's physical and mental health. This study develops an AI table tennis coaching system using a Multimodal Large Language Model with a table tennis knowledge base, aiming to provide precise training guidance and match strategies for table tennis beginners.

    METHOD: By using visual recognition technology, motion capture technology, and advanced multimodal large language models with a comprehensive professional table tennis knowledge base, the system accurately identifies common errors made by beginners and provides targeted training guidance.

    RESULT: The AI Table Tennis Coaching System demonstrates high accuracy in identifying mistakes made by beginner players, particularly in recognizing arm-related errors and racket-related errors, with accuracies reaching 73% and 82% respectively.

    CONCLUSION: The system operates at low costs, is easy to deploy, and offers a high cost-performance ratio, providing effective technological support for table tennis teaching and training. The AI table tennis coaching system is expected to play a significant role in enhancing training efficiency, promoting athlete skill improvement, and popularizing the sport. Future research will focus on improving the accuracy of footwork recognition in AI table tennis coaching systems and expanding their capability to provide training guidance for high-level athletes, thereby promoting the overall advancement of table tennis.

    Matched MeSH terms: Athletic Performance/physiology
  19. Bee SL, Hamid ZAA
    Int J Biol Macromol, 2025 Mar;295:139504.
    PMID: 39761899 DOI: 10.1016/j.ijbiomac.2025.139504
    Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative procedures used to repair periodontal defects caused by periodontitis. In both procedures, a barrier membrane is placed at the interface between the soft tissue and the periodontal defect, serving to impede the infiltration of soft tissue while creating a secluded space for periodontal regeneration. Recently, barrier membranes based on chitosan (CS) have emerged as a promising avenue for these applications. However, despite numerous studies on the development of CS-based membranes, comprehensive review articles specifically addressing their progress in GTR/GBR applications remain scarce. Herein, we review recent research and advancements in the use of CS-based membranes for periodontal GTR and GBR. The review begins by highlighting the advantageous properties of CS that make it a suitable biomaterial for GTR/GBR applications. Next, the development of composite CS-based membranes, reinforced with various compositions like bioactive fillers and therapeutic agents, is discussed in detail based on recent literature, with a focus on their enhanced efficacy in promoting periodontal regeneration. Finally, the review explores the emergence of functionally graded CS-based membranes, emphasizing their potential to address specific challenges encountered in GTR/GBR procedures.
    Matched MeSH terms: Periodontium/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links