OBJECTIVE: The study examines the effect of F. deltoidea on bone histomorphometric parameters, oxidative stress, and turnover markers in diabetic rats.
MATERIALS AND METHODS: Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats (n = 6 animals per group) received one of the following treatments via gavage for 8 weeks: saline (diabetic control), metformin (1000 mg/kg bwt), and methanol leaves extract of F. deltoidea (1000 mg/kg bwt). A group of healthy rats served as normal control. The femoral bones were excised and scanned ex vivo using micro-computed tomography (micro-CT) for histomorphometric analysis. The serum levels of insulin, oxidative stress, and bone turnover markers were determined by ELISA assays.
RESULTS: Treatment of diabetic rats with F. deltoidea could significantly increase bone mineral density (BMD) (from 526.98 ± 11.87 to 637.74 ± 3.90). Higher levels of insulin (2.41 ± 0.08 vs. 1.58 ± 0.16), osteocalcin (155.66 ± 4.11 vs. 14.35 ± 0.97), and total bone n-3 PUFA (2.34 ± 0.47 vs. 1.44 ± 0.18) in parallel with the presence of chondrocyte hypertrophy were also observed following F. deltoidea treatment compared to diabetic control.
CONCLUSIONS: F. deltoidea could prevent diabetic osteoporosis by enhancing osteogenesis and inhibiting bone oxidative stress. These findings support the potential use of F. deltoidea for osteoporosis therapy in diabetes.
MATERIALS AND METHODS: A total of 103 patients from the Chest Clinic of Hospital Tengku Ampuan Rahimah with sputum smears positive for acid-fast bacilli were included in this cross-sectional study. All sputa were tested using Xpert MTB/RIF to confirm the presence of M. tuberculosis complex and detect rifampicin resistance. Sputa were also sent to a respiratory medicine institute for mycobacterial culture. Positive cultures were then submitted to a reference laboratory, where isolates identified as M. tuberculosis complex underwent drug susceptibility testing (DST).
RESULTS: A total of 58 (56.3%) patients were newly diagnosed and 45 (43.7%) patients were previously treated. Xpert MTB/RIF was able to detect rifampicin resistance with a sensitivity and specificity of 87.5% and 98.9%, respectively. Assuming that a single resistant result from Xpert MTB/RIF or any DST method was sufficient to denote resistance, a total of 8/103 patients had rifampicinresistant M. tuberculosis. All eight patients were previously treated for PTB (p<0.05). The overall prevalence of rifampicin resistance among smear-positive PTB patients was 7.8%, although it was 17.8% among the previously treated ones.
CONCLUSION: The local prevalence of rifampicin-resistant M. tuberculosis was particularly high among previously treated patients. Xpert MTB/RIF can be employed in urban district health facilities not only to diagnose PTB in smear-positive patients, but also to detect rifampicin resistance with good sensitivity and specificity.