Displaying publications 81 - 100 of 156 in total

Abstract:
Sort:
  1. Ghozza MH, Mosleh AT, Kamoun EA, Abdel-Aty M, Alfiras M, Ahmed MH, et al.
    Phys Chem Chem Phys, 2025 Jan 15;27(3):1447-1458.
    PMID: 39698808 DOI: 10.1039/d4cp04515g
    Nanostructured bismuth ferrite (BiFeO3) single-phase nanoparticles with 76.2% crystallinity and 100% perovskite structure were synthesized using a co-precipitation method. The X-ray diffraction pattern confirmed the perovskite structure of BFO, and Rietveld refinement demonstrated the presence of a triclinic structure with the P1 space group. The Scherrer and Williamson-Hall equations were used to calculate the crystallite size (63 and 83 nm, respectively) with a grain size of almost 246 nm and an activation energy of 0.53 eV. The accumulation of free charges at interfaces, which correlate with the sample bulk and the interface between the compound and electrode space-charge polarization, was the reason behind the high values of ε'. As the frequency increased up to 1000 Hz, both dielectric constant ε' and dielectric loss ε' fell quickly. In contrast, at high frequencies, the ε' became more frequency-independent, notably when ε' increased with a temperature of up to 423 K. The sample exhibited considerable soft ferromagnetic-like activity due to the acquired nanoscale structure that promotes spin coating in the BiFeO3 antiferromagnetic phase. The significant coercivity 2624.5 Oe provides each materials in permanent magnetic and transformers. Photocatalytic activity of the BiFeO3 nanocomposite under UVA-light irradiation was performed using Congo red dye. The maximum photocatalytic degradation efficiency after 200 min for CR was 66%. The exceptional electrical and magnetic characteristics of nanostructured BiFeO3 provide new possibilities for its use in potential technological applications, i.e., spintronics, data storage microelectronics, and water treatment.
  2. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Zaudi MA, Aris AZ
    ScientificWorldJournal, 2014;2014:796425.
    PMID: 25574493 DOI: 10.1155/2014/796425
    The existing knowledge regarding seawater intrusion and particularly upconing, in which both problems are linked to pumping, entirely relies on theoretical assumptions. Therefore, in this paper, an attempt is made to capture the effects of pumping on seawater intrusion and upconing using 2D resistivity measurement. For this work, two positions, one perpendicular and the other parallel to the sea, were chosen as profile line for resistivity measurement in the coastal area near the pumping wells of Kapas Island, Malaysia. Subsequently, water was pumped out of two pumping wells simultaneously for about five straight hours. Then, immediately after the pumping stopped, resistivity measurements were taken along the two stationed profile lines. This was followed by additional measurements after four and eight hours. The results showed an upconing with low resistivity of about 1-10 Ωm just beneath the pumping well along the first profile line that was taken just after the pumping stopped. The resistivity image also shows an intrusion of saline water (water enriched with diluted salt) from the sea coming towards the pumping well with resistivity values ranging between 10 and 25 Ωm. The subsequent measurements show the recovery of freshwater in the aquifer and how the saline water is gradually diluted or pushed out of the aquifer. Similarly the line parallel to the sea (L2) reveals almost the same result as the first line. However, in the second and third measurements, there were some significant variations which were contrary to the expectation that the freshwater may completely flush out the saline water from the aquifer. These two time series lines show that as the areas with the lowest resistivity (1 Ωm) shrink with time, the low resistivity (10 Ωm) tends to take over almost the entire area implying that the freshwater-saltwater equilibrium zone has already been altered. These results have clearly enhanced our current understanding and add more scientific weight to the theoretical assumptions on the effects of pumping on seawater intrusion and upconing.
  3. Ghassem M, Fern SS, Said M, Ali ZM, Ibrahim S, Babji AS
    J Food Sci Technol, 2014 Mar;51(3):467-75.
    PMID: 24587521 DOI: 10.1007/s13197-011-0526-6
    This study was conducted to evaluate the kinetic characteristics of proteolytic activity of proteases on Channa striatus protein fractions. Degree of hydrolysis (DH), amino acid composition and kinetic parameters of sarcoplasmic and myofibrillar proteins were investigated when incubated with proteinase K and thermolysin, separately. After 30 min incubation with proteases, a decrease in DH of sarcoplasmic protein was observed whereas, hydrolysis of myofibrillar protein with proteases took 2 h with an increase in DH. The major amino acids were glutamic acid (16.6%) in thermolysin- myofibrillar hydrolysate followed by aspartic acid (11.1%) in sarcoplasmic protein fraction with no enzyme treatment and lysine (10%) in thermolysin-myofibrillar hydrolysate. The apparent Michaelis constant of proteinase K was lower than thermolysin for both sarcoplasmic and myofibrillar proteins. However, rate of turnover and enzyme efficiency suggested that sarcoplasmic and myofibrillar proteins are suitable substrates for proteinase K and thermolysin hydrolytic reaction, respectively.
  4. Bakhshipour Z, Huat BB, Ibrahim S, Asadi A, Kura NU
    ScientificWorldJournal, 2013;2013:629476.
    PMID: 24501583 DOI: 10.1155/2013/629476
    This work describes the application of the electrical resistivity (ER) method to delineating subsurface structures and cavities in Kuala Lumpur Limestone within the Batu Cave area of Selangor Darul Ehsan, Malaysia. In all, 17 ER profiles were measured by using a Wenner electrode configuration with 2 m spacing. The field survey was accompanied by laboratory work, which involves taking resistivity measurements of rock, soil, and water samples taken from the field to obtain the formation factor. The relationship between resistivity and the formation factor and porosity for all the samples was established. The porosity values were plotted and contoured. A 2-dimensional and 3-dimensional representation of the subsurface topography of the area was prepared through use of commercial computer software. The results show the presence of cavities and sinkholes in some parts of the study area. This work could help engineers and environmental managers by providing the information necessary to produce a sustainable management plan in order to prevent catastrophic collapses of structures and other related geohazard problems.
  5. Cui M, Jang M, Ibrahim S, Park B, Cho E, Khim J
    Ultrason Sonochem, 2014 Jul;21(4):1527-34.
    PMID: 24500068 DOI: 10.1016/j.ultsonch.2014.01.001
    Batch and continuous-flow pilot tests using ultrasound (US), ultraviolet (UV) and a combination of US and UV were conducted to determine the oxidation rates of arsenite [As(III)]. Compared to the single processes of US or UV, the combined US/UV system was more effective for As(III) oxidation with a synergy index of more than 1.5. A high rate constant of As(III) removal was obtained as ferrous [Fe(II)] ions existed. Like the pseudo-Fenton reaction, Fe(II) species can participate in the production of additional ·OH by reacting with H2O2 produced by US, before being oxidized to Fe(III). From the results of batch tests, the optimum molar ratio of Fe(II)/As(III) and pH were found to be 83 and 6-9.5, respectively. Similarly, the continuous-flow pilot tests showed that US/UV system could remove As(III) below the regulation [10 μg L(-1) as total As (Astot)] at 91 of molar ratio [Fe(II)/As(III)] and 3-h HRT. The continuous-stirred-tank-reactor (CSTR) modeling showed that the scavenging effect of anionic species (Cl(-) and CO3(2-)) for ·OH might prevail in the single processes, whereas it is insignificant in the combined process. Without using chemicals, microfiltration (MF) was adopted to treat sludge produced in oxidation step. In terms of an engineering aspect, the operational critical flux (CF) and cycle time were also optimized through the continuous-flow tests of MF system. As an energy-utilizing oxidation technique that does not require a catalyst, the combined energy system employing US/UV followed by MF could be a promising alternative for treating As(III) and Fe(II) simultaneously.
  6. Kura NU, Ramli MF, Sulaiman WN, Ibrahim S, Aris AZ, Mustapha A
    Int J Environ Res Public Health, 2013 May;10(5):1861-81.
    PMID: 23648442 DOI: 10.3390/ijerph10051861
    Groundwater chemistry of small tropical islands is influenced by many factors, such as recharge, weathering and seawater intrusion, among others, which interact with each other in a very complex way. In this work, multivariate statistical analysis was used to evaluate the factors controlling the groundwater chemistry of Kapas Island (Malaysia). Principal component analysis (PCA) was applied to 17 hydrochemical parameters from 108 groundwater samples obtained from 18 sampling sites. PCA extracted four PCs, namely seawater intrusion, redox reaction, anthropogenic pollution and weather factors, which collectively were responsible for more than 87% of the total variance of the island's hydrochemistry. The cluster analysis indicated that three factors (weather, redox reaction and seawater intrusion) controlled the hydrochemistry of the area, and the variables were allocated to three groups based on similarity. A Piper diagram classified the island's water types into Ca-HCO3 water type, Na-HCO3 water type, Na-SO4-Cl water type and Na-Cl water type, indicating recharge, mixed, weathering and leached from sewage and seawater intrusion, respectively. This work will provide policy makers and land managers with knowledge of the precise water quality problems affecting the island and can also serve as a guide for hydrochemistry assessments of other islands that share similar characteristics with the island in question.
  7. Nang CF, Osman K, Budin SB, Ismail MI, Jaffar FH, Mohamad SF, et al.
    Andrologia, 2012 May;44 Suppl 1:447-53.
    PMID: 21806660 DOI: 10.1111/j.1439-0272.2011.01203.x
    Liquid nitrogen preservation in remote farms is a limitation. The goal of this study was to determine optimum temperature above freezing point for bovine spermatozoa preservation using bovine serum albumin (BSA) as a supplementation. Pooled semen sample from three ejaculates was subjected to various BSA concentration (1, 4, 8 and 12 mg ml(-1)), before incubation in different above freezing point temperatures (4, 25 and 37 °C). Viability assessment was carried out against time from day 0 (fresh sample) until all spermatozoa become nonviable. Optimal condition for bovine spermatozoa storage was at 4 °C with 1 mg ml(-1) BSA for almost 7 days. BSA improved bovine spermatozoa viability declining rate to 44.28% at day 4 and 57.59% at day 7 compared to control, with 80.54% and 98.57% at day 4 and 7 respectively. Increase in BSA concentration did not improve sperm viability. Our results also confirmed that there was a strong negative correlation between media osmolarity and bovine spermatozoa survival rate with r = 0.885, P < 0.0001. Bovine serum albumin helps to improve survival rate of bovine spermatozoa stored above freezing point.
  8. Al-Khateeb A, Mohamed MS, Imran K, Ibrahim S, Zilfalil BA, Yusof Z
    Kobe J Med Sci, 2011;57(2):E38-48.
    PMID: 22926072
    The importance of serum lipids as cardiovascular risk factors is well recognized. However, most published studies have focused on western countries. The present study aimed to describe and analyze the lipid profile parameters in Malaysian dyslipidemic patients, and to identify concomitant clinical problems and risk factors associated with cardiovascular disease (CVD) among such patients.
  9. Chin KY, Soelaiman IN, Mohamed IN, Ibrahim S, Wan Ngah WZ
    Arch Osteoporos, 2012;7:135-45.
    PMID: 23225291 DOI: 10.1007/s11657-012-0091-2
    The influences of age, physical activity, and body anthropometry on calcaneal speed of sound are different among young adults, middle-aged, and elderly men.
  10. Ibrahim S, Sabudin S, Sahid S, Marzuke MA, Hussin ZH, Kader Bashah NS, et al.
    Saudi J Biol Sci, 2016 Jan;23(1):S56-63.
    PMID: 26858566 DOI: 10.1016/j.sjbs.2015.10.024
    Surface reactivity of bioactive ceramics contributes in accelerating bone healing by anchoring osteoblast cells and the connection of the surrounding bone tissues. The presence of silicon (Si) in many biocompatible and bioactive materials has been shown to improve osteoblast cell adhesion, proliferation and bone regeneration due to its role in the mineralisation process around implants. In this study, the effects of Si-biphasic calcium phosphate (Si-BCP) on bioactivity and adhesion of human osteoblast (hFOB) as an in vitro model have been investigated. Si-BCP was synthesised using calcium hydroxide (Ca(OH)2) and phosphoric acid (H3PO4) via wet synthesis technique at Ca/P ratio 1.60 of material precursors. SiO2 at 3 wt% based on total precursors was added into apatite slurry before proceeding with the spray drying process. Apatite powder derived from the spray drying process was pressed into discs with Ø 10 mm. Finally, the discs were sintered at atmospheric condition to obtain biphasic hydroxyapatite (HA) and tricalcium phosphate (TCP) peaks simultaneously and examined by XRD, AFM and SEM for its bioactivity evaluation. In vitro cell viability of L929 fibroblast and adhesion of hFOB cell were investigated via AlamarBlue® (AB) assay and SEM respectively. All results were compared with BCP without Si substitution. Results showed that the presence of Si affected the material's surface and morphology, cell proliferation and cell adhesion. AFM and SEM of Si-BCP revealed a rougher surface compared to BCP. Bioactivity in simulated body fluid (SBF) was characterised by pH, weight gain and apatite mineralisation on the sample surface whereby the changes in surface morphology were evaluated using SEM. Immersion in SBF up to 21 days indicated significant changes in pH, weight gain and apatite formation. Cell viability has demonstrated no cytotoxic effect and denoted that Si-BCP promoted good initial cell adhesion and proliferation. These results suggest that Si-BCP's surface roughness (164 nm) was significantly higher than BCP (88 nm), thus enhancing the adhesion and proliferation of the osteoblast.
  11. Kittappa S, Cui M, Ramalingam M, Ibrahim S, Khim J, Yoon Y, et al.
    PLoS One, 2015;10(7):e0130253.
    PMID: 26161510 DOI: 10.1371/journal.pone.0130253
    Mesoporous silica materials (MSMs) were synthesized economically using silica (SiO2) as a precursor via a modified alkaline fusion method. The MSM prepared at 500°C (MSM-500) had the highest surface area, pore size, and volume, and the results of isotherms and the kinetics of ibuprofen (IBP) removal indicated that MSM-500 had the highest sorption capacity and fastest removal speed vs. SBA-15 and zeolite. Compared with commercial granular activated carbon (GAC), MSM-500 had a ~100 times higher sorption rate at neutral pH. IBP uptake by MSM-500 was thermodynamically favorable at room temperature, which was interpreted as indicating relatively weak bonding because the entropy (∆adsS, -0.07 J mol(-1) K(-1)) was much smaller. Five times recycling tests revealed that MSM-500 had 83-87% recovery efficiencies and slower uptake speeds due to slight deformation of the outer pore structure. In the IBP delivery test, MSM-500 drug loading was 41%, higher than the reported value of SBA-15 (31%). The in vitro release of IBP was faster, almost 100%, reaching equilibrium within a few hours, indicating its effective loading and unloading characteristics. A cost analysis study revealed that the MSM was ~10-70 times cheaper than any other mesoporous silica material for the removal or delivery of IBP.
  12. Ibrahim SB, Omar MB, Gan EC, Rauf A, Johari NB, Yusof HB
    Med J Malaysia, 1995 Sep;50(3):221-5.
    PMID: 8926898
    A prospective study of 94 burned children was carried out from January 1993 to October 1994. Scalding was the predominant cause of injury affecting mainly toddlers between 1 and 3 years old. Ninety-six per cent of the injuries occurred at home. There was 1 death following an 81% flame burns. An intense campaign to make parents aware of the hazards is required as almost all the injuries were preventable.
  13. Lam UN, Siddik NSFMM, Yussof SJM, Ilenghoven D, Ibrahim S
    Arch Plast Surg, 2020 Sep;47(5):490-492.
    PMID: 32971604 DOI: 10.5999/aps.2020.01347
  14. Lam UN, Md Mydin Siddik NSF, Mohd Yussof SJ, Ibrahim S
    Int Wound J, 2020 Oct;17(5):1525-1527.
    PMID: 32397010 DOI: 10.1111/iwj.13398
  15. Elias MS, Ibrahim S, Samuding K, Kantasamy N, Daung JAD, Rahman SA, et al.
    Data Brief, 2019 Aug;25:103983.
    PMID: 31194012 DOI: 10.1016/j.dib.2019.103983
    This study is on the distribution of rare earth elements (REEs) concentrations in sediments collected from 113 sampling locations of Linggi River. The analysis of sediment samples was performed by Neutron Activation Analysis (NAA) and Inductively Coupled Plasma - Mass spectrometer (ICP-MS). The main compositions of Linggi river sediments were silt > sand > clay. The mean of total concentrations of REEs (ΣREE), light REEs (ΣLREE) and heavy REEs (ΣHREE) in Linggi sediment were 249, 228, and 22.0 mg/kg, respectively. The results of Linggi river sediment were normalised to several reference shale values. REEs of Linggi river sediments were comparable to MUQ reference shale values. Enrichment factors (EF) of mean values indicate Linggi River sediment can be categorised as having minor to moderate enrichment.
  16. Choong CE, Wong KT, Jang SB, Nah IW, Choi J, Ibrahim S, et al.
    Chemosphere, 2020 Jan;239:124765.
    PMID: 31520981 DOI: 10.1016/j.chemosphere.2019.124765
    In this study, palm shell activated carbon powder (PSAC) and magnesium silicate (MgSiO3) modified PSAC (MPSAC) were thoroughly investigated for fluoride (F-) adsorption. F- adsorption isotherms showed that PSAC and MPSAC over-performed some other reported F- adsorbents with adsorption capacities of 116 mg g-1 and 150 mg g-1, respectively. Interestingly, the MgSiO3 impregnated layer changed the adsorption behavior of F- from monolayer to heterogeneous multilayer based on the Langmuir and Freundlich isotherm models verified by chi-square test (X2). Thermodynamic parameters indicated that the F- adsorption on PSAC and MPSAC was spontaneous and exothermic. PSAC and MPSAC were characterized using FESEM-EDX, XRD, FTIR and XPS to investigate the F- adsorption mechanism. Based on the regeneration tests using NaOH (0.01 M), PSAC exhibited poor regeneration (<20%) while MPSAC had steady adsorption efficiencies (∼70%) even after 5 regeneration cycles. This is due to highly polarized C-F bond was found on PSAC while Mg-F bond was distinguished on MPSAC, evidently denoting that the F- adsorption is mainly resulted from the exchange of hydroxyl (-OH) group. It was concluded that PSAC would be a potential adsorbent for in-situ F- groundwater remediation due to its capability to retain F- without leaching out in a wide range pH. MPSAC would be an alternative adsorbent for ex-situ F- water remediation because it can easily regenerate with NaOH solution. With the excellent F- adsorption properties, both PSAC and MPSAC offer as promising adsorbents for F- remediation in the aqueous phase.
  17. Elias MS, Ibrahim S, Samuding K, Kantasamy N, Rahman SA, Hashim A
    Appl Radiat Isot, 2019 Sep;151:116-123.
    PMID: 31174051 DOI: 10.1016/j.apradiso.2019.05.038
    A study was carried out to determine the concentrations of rare earth elements (REEs) in Linggi river sediments collected from 113 sampling locations. The sediment analysis was performed by Neutron activation analysis (NAA) and Inductively coupled plasma - mass spectrometry (ICP-MS). The results of Linggi river sediment were normalized to "recent" reference shale values. The means of total concentrations of REEs (ΣREE), light REEs (ΣLREE) and heavy REEs (ΣHREE) in Linggi sediment were 241.2, 219.2, and 22.0 mg/kg, respectively, which indicates enrichment compared to ΣREE, ΣLREE and ΣHREE reference shale values. Results obtained from enrichment factors (EF) show no enrichment to moderate enrichment of Linggi sediments, indicating the sources of REEs pollution originated from natural and land-based activities. A similar pattern was observed by comparing the REEs values of Linggi sediments to other references shale values. Ce (δCe) and Eu (δEu) anomalies indicate Linggi sediments showed positive anomaly of Ce whilst negative anomaly of Eu.
  18. Whba R, Su'ait MS, Tian Khoon L, Ibrahim S, Mohamed NS, Ahmad A
    Polymers (Basel), 2021 Feb 23;13(4).
    PMID: 33672185 DOI: 10.3390/polym13040660
    The exploitation of epoxidized natural rubber (ENR) in electrochemical applications is approaching its limits because of its poor thermo-mechanical properties. These properties could be improved by chemical and/or physical modification, including grafting and/or crosslinking techniques. In this work, acrylonitrile (ACN) has been successfully grafted onto ENR- 25 by a radical photopolymerization technique. The effect of (ACN to ENR) mole ratios on chemical structure and interaction, thermo-mechanical behaviour and that related to the viscoelastic properties of the polymer was investigated. The existence of the -C≡N functional group at the end-product of ACN-g-ENR is confirmed by infrared (FT-IR) and nuclear magnetic resonance (NMR) analyses. An enhanced grafting efficiency (~57%) was obtained after ACN was grafted onto the isoprene unit of ENR- 25 and showing a significant improvement in thermal stability and dielectric properties. The viscoelastic behaviour of the sample analysis showed an increase of storage modulus up to 150 × 103 MPa and the temperature of glass transition (Tg) was between -40 and 10 °C. The loss modulus, relaxation process, and tan delta were also described. Overall, the ACN-g-ENR shows a distinctive improvement in characteristics compared to ENR and can be widely used in many applications where natural rubber is used but improved thermal and mechanical properties are required. Likewise, it may also be used in electronic applications, for example, as a polymer electrolyte in batteries or supercapacitor.
  19. Ibrahim S, Shukor MY, Syed MA, Johari WL, Shamaan NA, Sabullah MK, et al.
    J Gen Appl Microbiol, 2016;62(1):18-24.
    PMID: 26923127 DOI: 10.2323/jgam.62.18
    In a previous study, we isolated Leifsonia sp. strain SIU, a new bacterium from agricultured soil. The bacterium was tested for its ability to degrade caffeine. The isolate was encapsulated in gellan gum and its ability to degrade caffeine was compared with the free cells. The optimal caffeine degradation was attained at a gellan gum concentration of 0.75% (w/v), a bead size of 4 mm diameter, and 250 beads per 100 mL of medium. At a caffeine concentration of 0.1 g/L, immobilised cells of the strain SIU degraded caffeine within 9 h, which is faster when compared to the case of free cells, in which it took 12 h to degrade. The immobilised cells degraded caffeine completely within 39 and 78 h at 0.5 and 1.0 g/L, while the free cells took 72 and 148 h at 0.5 and 1.0 g/L, respectively. At higher caffeine concentrations, immobilised cells exhibited a higher caffeine degradation rate. At concentrations of 1.5 and 2.0 g/L, caffeine-degrading activities of both immobilised and free cells were inhibited. The immobilised cells showed no loss in caffeine-degrading activity after being used repeatedly for nine 24-h cycles. The effect of heavy metals on immobilised cells was also tested. This study showed an increase in caffeine degradation efficiency when the cells were encapsulated in gellan gum.
  20. Mhd Haniffa MAC, Ching YC, Illias HA, Munawar K, Ibrahim S, Nguyen DH, et al.
    Carbohydr Polym, 2021 Feb 01;253:117245.
    PMID: 33279000 DOI: 10.1016/j.carbpol.2020.117245
    Cellulose with ample hydroxyl groups is considered as a promising supportive biopolymer for fabricating cellulose supported promising magnetic sorbents (CMS) for magnetic solid-phase extraction (MSPE). The easy recovery via external magnetic field, and recyclability of CMS, associated with different types and surface modifications of cellulose has made them a promising sorbent in the field of solid-phase extraction. CMS based sorbent can offer improved adsorption and absorption capabilities due to its high specific surface area, porous structure, and magnetic attraction feature. This review mainly focuses on the fabrication strategies of CMS using magnetic nanoparticles (MNPs) and various forms of cellulose as a heterogeneous and homogeneous solution either in alkaline mediated urea or Ionic liquids (ILs). Moreover, CMS will be elaborated based on their structures, synthesis, physical performance, and chemical attraction of MNPs and their MSPE in details. The advantages, challenges, and prospects of CMS in future applications are also presented.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links