Displaying publications 81 - 100 of 107 in total

Abstract:
Sort:
  1. Siddiqui R, Yee Ong TY, Maciver S, Khan NA
    Ther Deliv, 2023 Aug;14(8):485-490.
    PMID: 37691579 DOI: 10.4155/tde-2023-0032
    Aim: CNS infections due to parasites often prove fatal. In part, this is due to inefficacy of drugs to cross the blood-brain barrier. Methods: Here, we tested intranasal and intravenous route and compared adverse effects of Amphotericin B administration, through blood biochemistry, liver, kidney and brain histopathological evidence of toxicities in vivo post-administration. Results: It was observed that intranasal route limits the adverse side effects of Amphotericin B, in contrast to intravenous route. Conclusion: As parasites such as Naegleria fowleri exhibit unequivocal affinity toward the olfactory bulb and frontal lobe in the central nervous system, intranasal administration would directly reach amoebae bypassing the blood-brain barrier selectivity and achieve the minimum inhibitory concentration at the target site.
  2. Walvekar S, Anwar A, Anwar A, Lai NJY, Yow YY, Khalid M, et al.
    J Parasitol, 2021 07 01;107(4):537-546.
    PMID: 34265050 DOI: 10.1645/21-41
    Nanomedicine has the potential in enhancing the efficacy and bioavailability of anti-infective agents. Here we determined whether conjugation of the Malaysian cultivated seaweed Kappaphycus alvarezii with silver-conjugated nanoparticles enhanced anti-acanthamoebic properties. Silver-conjugated K. alvarezii were successfully synthesized, followed by characterization with Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, and transmission electron microscopy. Amoebicidal effects were evaluated against Acanthamoeba castellanii, and cytotoxicity assays were performed using HaCaT cells. Viability assays revealed that silver nanoparticles conjugated with K. alvarezii extract exhibited significant antiamoebic properties (P < 0.05). Nano-conjugates induced the production of reactive oxygen species. Importantly, silver-conjugated extract inhibited amoeba-mediated host cell damage as established by lactate dehydrogenase release. Neither the nano-conjugates nor the extract showed cytotoxicity against human cells in vitro. Liquid chromatography and mass spectroscopy revealed several molecules, including 2,6-nonadien-1-ol, N-desmethyl trifluoperazine, dulciol B, lucidumol A, acetoxolone, 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol, C16 sphinganine, 22-tricosenoic acid, and β-dihydrorotenone, of which dulciol B and C16 sphinganine are known to possess antimicrobial activities. In summary, marine organisms are an important source of bioactive molecules with anti-acanthamoebic properties that can be enhanced by conjugating with silver nanoparticles. Natural products combined with nanotechnology using multifunctional nanoparticle complexes can deliver therapeutic agents effectively and hold promise in the development of new formulations of anti-acanthamoebic agents.
  3. Mungroo MR, Anwar A, Khan NA, Siddiqui R
    Mini Rev Med Chem, 2019;19(12):980-987.
    PMID: 30868950 DOI: 10.2174/1389557519666190313161854
    Pathogenic free-living amoeba are known to cause a devastating infection of the central nervous system and are often referred to as "brain-eating amoebae". The mortality rate of more than 90% and free-living nature of these amoebae is a cause for concern. It is distressing that the mortality rate has remained the same over the past few decades, highlighting the lack of interest by the pharmaceutical industry. With the threat of global warming and increased outdoor activities of public, there is a need for renewed interest in identifying potential anti-amoebic compounds for successful prognosis. Here, we discuss the available chemotherapeutic options and opportunities for potential strategies in the treatment and diagnosis of these life-threatening infections.
  4. Rajendran K, Anwar A, Khan NA, Siddiqui R
    ACS Chem Neurosci, 2017 12 20;8(12):2626-2630.
    PMID: 29206032 DOI: 10.1021/acschemneuro.7b00430
    The overall aim of this study was to determine whether conjugation with silver nanoparticles enhances effects of available drugs against primary amoebic meningoencephalitis due to Naegleria fowleri. Amphotericin B, Nystatin, and Fluconazole were conjugated with silver nanoparticles, and synthesis was confirmed using UV-visible spectrophotometry. Atomic force microscopy determined their size in range of 20-100 nm. To determine amoebicidal effects, N. fowleri were incubated with drugs-conjugated silver nanoparticles, silver nanoparticles alone, and drugs alone. The findings revealed that silver nanoparticles conjugation significantly enhanced antiamoebic effects of Nystatin and Amphotericin B but not Fluconazole at micromolar concentrations, compared with the drugs alone. For the first time, our findings showed that silver nanoparticle conjugation enhances efficacy of antiamoebic drugs against N. fowleri. Given the rarity of the disease and challenges in developing new drugs, it is hoped that modifying existing drugs to enhance their antiamoebic effects is a useful avenue that holds promise in improving the treatment of brain-eating amoebae infection due to N. fowleri.
  5. Ong TYY, Khan NA, Siddiqui R
    J Clin Microbiol, 2017 07;55(7):1989-1997.
    PMID: 28404683 DOI: 10.1128/JCM.02300-16
    Acanthamoeba spp. and Balamuthia mandrillaris are causative agents of granulomatous amoebic encephalitis (GAE), while Naegleria fowleri causes primary amoebic meningoencephalitis (PAM). PAM is an acute infection that lasts a few days, while GAE is a chronic to subacute infection that can last up to several months. Here, we present a literature review of 86 case reports from 1968 to 2016, in order to explore the affinity of these amoebae for particular sites of the brain, diagnostic modalities, treatment options, and disease outcomes in a comparative manner.
  6. Siddiqui R, Ali IK, Cope JR, Khan NA
    Acta Trop, 2016 Dec;164:375-394.
    PMID: 27616699 DOI: 10.1016/j.actatropica.2016.09.009
    Naegleria fowleri is a protist pathogen that can cause lethal brain infection. Despite decades of research, the mortality rate related with primary amoebic meningoencephalitis owing to N. fowleri remains more than 90%. The amoebae pass through the nose to enter the central nervous system killing the host within days, making it one of the deadliest opportunistic parasites. Accordingly, we present an up to date review of the biology and pathogenesis of N. fowleri and discuss needs for future research against this fatal infection.
  7. Ali SM, Khan NA, Sagathevan K, Anwar A, Siddiqui R
    AMB Express, 2019 Jun 28;9(1):95.
    PMID: 31254123 DOI: 10.1186/s13568-019-0816-3
    The discovery of novel antimicrobials from animal species under pollution is an area untapped. Chinese red-headed centipede is one of the hardiest arthropod species commonly known for its therapeutic value in traditional Chinese medicine. Here we determined the antibacterial activity of haemolymph and tissue extracts of red-headed centipede, Scolopendra subspinipes against a panel of Gram-positive and Gram-negative bacteria. Lysates exhibited potent antibacterial activities against a broad range of bacteria tested. Chemical characterization of biologically active molecules was determined via liquid chromatography mass spectrometric analysis. From crude haemolymph extract, 12 compounds were identified including: (1) L-Homotyrosine, (2) 8-Acetoxy-4-acoren-3-one, (3) N-Undecylbenzenesulfonic acid, (4) 2-Dodecylbenzenesulfonic acid, (5) 3H-1,2-Dithiole-3-thione, (6) Acetylenedicarboxylate, (7) Albuterol, (8) Tetradecylamine, (9) Curcumenol, (10) 3-Butylidene-7-hydroxyphthalide, (11) Oleoyl Ethanolamide and (12) Docosanedioic acid. Antimicrobial activities of the identified compounds were reported against Gram-positive and Gram-negative bacteria, fungi, viruses and parasites, that possibly explain centipede's survival in harsh and polluted environments. Further research in characterization, molecular mechanism of action and in vivo testing of active molecules is needed for the development of novel antibacterials.
  8. Siddiqui R, Maciver SK, Anuar TS, Khan NA
    Am J Vet Res, 2023 Aug 01;84(8).
    PMID: 37353216 DOI: 10.2460/ajvr.23.03.0061
    OBJECTIVE: The objective of this study was to determine bacterial flora throughout the gastrointestinal tract of a saltwater crocodile (Crocodylus porosus) using 16S rRNA gene analysis.

    ANIMALS: A convention on international trade in endangered species (CITES) of wild fauna and flora registered crocodile farm, provided a healthy male saltwater crocodile, Crocodylus porosus for this study.

    PROCEDURES: Three samples were taken from the oral cavity, 3 samples from the proximal region of the small intestine (jejunum), and 3 samples from the distal part of the large intestine of the gastrointestinal tract of C. porosus were obtained using sterile cotton swabs. Next, swabs were placed in 15 mL sterile centrifuge tubes, individually, and kept on ice for immediate transportation to the laboratory. This was followed by 16S rRNA gene analysis using specific primers (341F-CCTAYGGGRBGCASCAG, and 806R-GGACTACNNGGGTATCTAAT). Amplicons were sequenced on Illumina paired-end platform, and bacterial gastrointestinal communities, the relative abundance of taxa, and principal component and coordinate analysis were performed.

    RESULTS: The findings revealed that bacterial community structures from differing regions exhibited several differences. The number of observed bacterial operational taxonomic units (OTUs) was 153 in the oral cavity, 239 in the small intestine, and 119 in the large intestine of C. porosus. The small intestine reflects the highest richness. In contrast, the large intestine exhibited the least richness of microbial communities. Relative abundance of taxa showed that Proteobacteria, Bacteroidetes, and Firmicutes were dominant in all 3 sample sites. Pseudomonas differed in the oral cavity and the large intestine, with the latter exhibiting less distribution of Pseudomonas. Stenotrophomonas and Castellaniella were higher in the oral cavity, while the relative abundance of Comamonas and Salmonella was higher in the small intestine. Conversely, the relative abundance of Salmonella and Pannonibacter was augmented in the large intestine.

    CLINICAL RELEVANCE: For the first time, this study demonstrates the bacterial diversity along the segments of the gastrointestinal tract of C. porosus. Bacterial flora varies throughout the gastrointestinal tract. Although further studies using large cohorts are warranted; however, our findings suggest that microbiome composition may have the potential as a biomarker in determining the overall health and well-being of C. porosus.

  9. Mungroo MR, Shahbaz MS, Anwar A, Saad SM, Khan KM, Khan NA, et al.
    ACS Chem Neurosci, 2020 08 19;11(16):2438-2449.
    PMID: 31961126 DOI: 10.1021/acschemneuro.9b00596
    Naegleria fowleri and Balamuthia mandrillaris are protist pathogens that infect the central nervous system, causing primary amoebic meningoencephalitis and granulomatous amoebic encephalitis with mortality rates of over 95%. Quinazolinones and their derivatives possess a wide spectrum of biological properties, but their antiamoebic effects against brain-eating amoebae have never been tested before. In this study, we synthesized a variety of 34 novel arylquinazolinones derivatives (Q1-Q34) by altering both quinazolinone core and aryl substituents. To study the antiamoebic activity of these synthetic arylquinazolinones, amoebicidal and amoebistatic assays were performed against N. fowleri and B. mandrillaris. Moreover, amoebae-mediated host cells cytotopathogenicity and cytotoxicity assays were performed against human keratinocytes cells in vitro. The results revealed that selected arylquinazolinones derivatives decreased the viability of B. mandrillaris and N. fowleri significantly (P < 0.05) and reduced cytopathogenicity of both parasites. Furthermore, these compounds were also found to be least cytotoxic against HaCat cells. Considering that nanoparticle-based materials possess potent in vitro activity against brain-eating amoebae, we conjugated quinazolinones derivatives with silver nanoparticles and showed that activities of the drugs were enhanced successfully after conjugation. The current study suggests that quinazolinones alone as well as conjugated with silver nanoparticles may serve as potent therapeutics against brain-eating amoebae.
  10. Anwar A, Khan NA, Alharbi AM, Alhazmi A, Siddiqui R
    Int Ophthalmol, 2024 Mar 15;44(1):140.
    PMID: 38491335 DOI: 10.1007/s10792-024-03062-4
    Keratitis is corneal inflammatory disease which may be caused by several reason such as an injury, allergy, as well as a microbial infection. Besides these, overexposure to ultraviolet light and unhygienic practice of contact lenses are also associated with keratitis. Based on the cause of keratitis, different lines of treatments are recommended. Photodynamic therapy is a promising approach that utilizes light activated compounds to instigate either killing or healing mechanism to treat various diseases including both communicable and non-communicable diseases. This review focuses on clinically-important patent applications and the recent literature for the use of photodynamic therapy against keratitis.
  11. Abdelnasir S, Mungroo MR, Chew J, Siddiqui R, Khan NA, Ahmad I, et al.
    ACS Omega, 2023 Mar 07;8(9):8237-8247.
    PMID: 36910978 DOI: 10.1021/acsomega.2c06050
    Primary amoebic meningoencephalitis and granulomatous amoebic encephalitis are distressing infections of the central nervous system caused by brain-eating amoebae, namely, Naegleria fowleri and Acanthamoeba spp., respectively, and present mortality rates of over 90%. No single drug has been approved for use against these infections, and current therapy is met with an array of obstacles including high toxicity and limited specificity. Thus, the development of alternative effective chemotherapeutic agents for the management of infections due to brain-eating amoebae is a crucial requirement to avert future mortalities. In this paper, we synthesized a conducting polymer-based nanocomposite entailing polyaniline (PANI) and molybdenum disulfide (MoS2) and explored its anti-trophozoite and anti-cyst potentials against Acanthamoeba castellanii and Naegleria fowleri. The intracellular generation of reactive oxygen species (ROS) and ultrastructural appearances of amoeba were also evaluated with treatment. Throughout, treatment with the 1:2 and 1:5 ratios of PANI/MoS2 at 100 μg/mL demonstrated significant anti-amoebic effects toward A. castellanii as well as N. fowleri, appraised to be ROS mediated and effectuate physical alterations to amoeba morphology. Further, cytocompatibility toward human keratinocyte skin cells (HaCaT) and primary human corneal epithelial cells (pHCEC) was noted. For the first time, polymer-based nanocomposites such as PANI/MoS2 are reported in this study as appealing options in the drug discovery for brain-eating amoebae infections.
  12. Jeyamogan S, Khan NA, Siddiqui R
    Arch Med Res, 2021 02;52(2):131-142.
    PMID: 33423803 DOI: 10.1016/j.arcmed.2020.10.016
    The number of cancer cases worldwide in terms of morbidity and mortality is a serious concern, despite the presence of therapeutic interventions and supportive care. Limitations in the current available diagnosis methods and treatments methods may contribute to the increase in cancer mortality. Theranostics, is a novel approach that has opened avenues for the simultaneous precise diagnosis and treatment for cancer patients. Although still in the early development stage, theranostic agents such as quantum dots, radioisotopes, liposomes and plasmonic nanobubbles can be bound to anticancer drugs, cancer cell markers and imaging agents, with the support of available imaging techniques, provide the potential to facilitate diagnosis, treatment and management of cancer patients. Herein, we discuss the potential benefits of several theranostic tools for the management of cancer. Specifically, quantum dots, radio-labelled isotopes, liposomes and plasmonic nanobubbles coupled with targeting agents and/or anticancer molecules and imaging agents as theranostic agents are deliberated upon in this review. Overall, the use of theranostic agents shows promise in cancer management. Nevertheless, intensive research is required to realize these expectations.
  13. Jeyamogan S, Khan NA, Siddiqui R
    Asian Pac J Cancer Prev, 2021 Feb 12;22(S1):97-106.
    PMID: 33576218 DOI: 10.31557/APJCP.2021.22.S1.97
    OBJECTIVES: Here we determined antitumour effects of purified compounds such as Valdecoxib, Rofecoxib, L-Methionine and Artocarpin against cancer cell lines.

    METHODS: Using purified compounds, assays were performed to determine their effects against cancer cell lines using growth inhibition assays, cytotoxicity assays, and cell survival assays against HeLa, PC3 and MCF7 cells.

    RESULTS: The results showed that the selected small molecules L-Methionine, Rofecoxib, and Artocarpin suppressed the growth of more than 90% PC3 cells at 40µM. Similarly, Valdecoxib alone and in combination with other molecules exhibited potent growth inhibition and cytotoxicity against cancer cells tested. Peptide from the serum of M. reticulatus, demonstrated selective cytotoxicity against cancer cells without inhibiting the growth of normal cells.

    CONCLUSION: These findings are significant and provide a basis for the rational development of therapeutic anticancer agents, however intensive research is needed to determine in vivo effects of the identified molecules together with their mode of action to realize these expectations. 
    .

  14. Ali SM, Siddiqui R, Khan NA
    J Pharm Pharmacol, 2018 Oct;70(10):1287-1300.
    PMID: 30003546 DOI: 10.1111/jphp.12976
    OBJECTIVES: Whether vertebrates/invertebrates living in polluted environments are an additional source of antimicrobials.

    KEY FINDINGS: Majority of antimicrobials have been discovered from prokaryotes and those which are of eukaryotic origin are derived mainly from fungal and plant sources. With this in mind, it is important to note that pests, such as cockroaches come across pathogenic bacteria routinely, yet thrive in polluted environments. Other animals, such as snakes thrive from feeding on germ-infested rodents. Logically, such species must have developed an approach to protect themselves from these pathogens, yet they have largely been ignored as a potential source of antimicrobials despite their remarkable capability to fight disease-causing organisms.

    SUMMARY: Animals living in polluted environments are an underutilized source for potential antimicrobials, hence it is believed that several novel bioactive molecule(s) will be identified from these sources to counter increasingly resistant bacterial infections. Further research will be necessary in the development of novel antimicrobial(s) from these unusual sources which will have huge clinical impact worldwide.

  15. Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, et al.
    Sci Rep, 2019 02 28;9(1):3122.
    PMID: 30816269 DOI: 10.1038/s41598-019-39528-0
    Herein, we report green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids Hesperidin (HDN) and Naringin (NRG) as novel antimicrobial agents against brain-eating amoebae and multi-drug resistant bacteria. Nanoparticles were thoroughly characterized by using zetasizer, zeta potential, atomic force microscopy, ultravoilet-visible and Fourier transform-infrared spectroscopic techniques. The size of these spherical nanoparticles was found to be in the range of 100-225 nm. The antiamoebic effects of these green synthesized Silver and Gold nanoparticles loaded with HDN and NRG were tested against Acanthamoeba castellanii and Naegleria fowleri, while antibacterial effects were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Amoebicidal assays revealed that HDN loaded Silver nanoparticles stabilized by gum acacia (GA-AgNPs-HDN) quantitatively abolished amoeba viability by 100%, while NRG loaded Gold nanoparticles stabilized by gum tragacanth (GT-AuNPs-NRG) significantly reduced the viability of A. castellanii and N. fowleri at 50 µg per mL. Furthermore, these nanoparticles inhibited the encystation and excystation by more than 85%, as well as GA-AgNPs-HDN only completely obliterated amoeba-mediated host cells cytopathogenicity. Whereas, GA-AgNPs-HDN exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced bacterial-mediated host cells cytotoxicity. Notably, when tested against human cells, these nanoparticles showed minimal (23%) cytotoxicity at even higher concentration of 100 µg per mL as compared to 50 µg per mL used for antimicrobial assays. Hence, these novel nanoparticles formulations hold potential as therapeutic agents against infections caused by brain-eating amoebae, as well as multi-drug resistant bacteria, and recommend a step forward in drug development.
  16. Anwar A, Siddiqui R, Raza Shah M, Khan NA
    J Microbiol Biotechnol, 2019 May 28;29(5):713-720.
    PMID: 31030451 DOI: 10.4014/jmb/1903.03009
    Acanthamoeba castellanii belonging to the T4 genotype may cause a fatal brain infection known as granulomatous amoebic encephalitis, and the vision-threatening eye infection Acanthamoeba keratitis. The aim of this study was to evaluate the antiamoebic effects of three clinically available antidiabetic drugs, Glimepiride, Vildagliptin and Repaglinide, against A. castellanii belonging to the T4 genotype. Furthermore, we attempted to conjugate these drugs with silver nanoparticles (AgNPs) to enhance their antiamoebic effects. Amoebicidal, encystation, excystation, and host cell cytotoxicity assays were performed to unravel any antiacanthamoebic effects. Vildagliptin conjugated silver nanoparticles (Vgt-AgNPs) characterized by spectroscopic techniques and atomic force microscopy were synthesized. All three drugs showed antiamoebic effects against A. castellanii and significantly blocked the encystation. These drugs also showed significant cysticidal effects and reduced host cell cytotoxicity caused by A. castellanii. Moreover, Vildagliptin-coated silver nanoparticles were successfully synthesized and are shown to enhance its antiacanthamoebic potency at significantly reduced concentration. The repurposed application of the tested antidiabetic drugs and their nanoparticles against free-living amoeba such as Acanthamoeba castellanii described here is a novel outcome that holds tremendous potential for future applications against devastating infection.
  17. Jeyamogan S, Khan NA, Sagathevan K, Siddiqui R
    Anticancer Agents Med Chem, 2020;20(13):1558-1570.
    PMID: 32364082 DOI: 10.2174/1871520620666200504103056
    BACKGROUND: Cancer contributes to significant morbidity and mortality despite advances in treatment and supportive care. There is a need for the identification of effective anticancer agents. Reptiles such as tortoise, python, and water monitor lizards are exposed to heavy metals, tolerate high levels of radiation, feed on rotten/germ-infested feed, thrive in unsanitary habitat and yet have prolonged lifespans. Such species are rarely reported to develop cancer, suggesting the presence of anticancer molecules/mechanisms.

    METHODS: Here, we tested effects from sera of Asian water monitor lizard (Varanus salvator), python (Malayopython reticulatus) and tortoise (Cuora kamaroma amboinensis) against cancer cells. Sera were collected and cytotoxicity assays were performed using prostate cancer cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells (MCF7), as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation. Liquid chromatography mass spectrometry was performed for molecular identification.

    RESULTS: The findings revealed that reptilian sera, but not bovine serum, abolished viability of Hela, PC3 and MCF7 cells. Samples were subjected to liquid chromatography mass spectrometry, which detected 57 molecules from V. salvator, 81 molecules from Malayopython reticulatus and 33 molecules from C. kamaroma amboinensis and putatively identified 9 molecules from V. salvator, 20 molecules from Malayopython reticulatus and 9 molecules from C. kamaroma amboinensis when matched against METLIN database. Based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition, 123 potential Anticancer Peptides (ACPs) were identified from 883 peptides from V. salvator, 306 potential ACPs from 1074 peptides from Malayopython reticulatus and 235 potential ACPs from 885 peptides from C. kamaroma amboinensis.

    CONCLUSION: To our knowledge, for the first time, we reported comprehensive analyses of selected reptiles' sera using liquid chromatography mass spectrometry, leading to the identification of potentially novel anticancer agents. We hope that the discovery of molecules from these animals will pave the way for the rational development of new anticancer agents.

  18. Ali SM, Siddiqui R, Sagathevan KA, Khan NA
    Folia Microbiol (Praha), 2021 Apr;66(2):285-291.
    PMID: 33704690 DOI: 10.1007/s12223-021-00860-6
    The evolution of multiple-drug resistant bacteria is contributing to the global antimicrobial crisis, hence driving us to search for novel antimicrobial(s). Among animals, invertebrates represent up to 80% of all known species suggesting their wide distribution. Despite their ubiquitous and plentiful nature, they have been largely unexplored as potential source of antibacterials. In this study, we selected a broad range of invertebrates from terrestrial and marine environments and tested their lysates for antibacterial activity against methicillin-resistant Staphylococcus aereus (MRSA) and neuropathogenic Escherichia coli K1. Cockroaches, centipedes, tarantulas, prawns, lobster, and mud crabs showed antibacterial activity with selected lysates exhibiting more than 90% bactericidal effects. The red-headed centipede's hemolymph showed 90% and 50% bacteriostatic activity against MRSA and E. coli K1, respectively. Tarantula's body extracts exhibited antibacterial activity against MRSA and E. coli K1. Gut extracts of tiger prawn exhibited more than 90% bacteriostatic activity against both bacteria. The selected lobster and mud crab extract exhibited up to 90% growth inhibitory activity against MRSA. Overall, these results showed that selected invertebrates are an untapped source of broad-spectrum antibacterial activity and suggest the presence of biologically active molecules.
  19. Anwar A, Yi YP, Fatima I, Khan KM, Siddiqui R, Khan NA, et al.
    Parasitol Res, 2020 Jun;119(6):1943-1954.
    PMID: 32385711 DOI: 10.1007/s00436-020-06694-4
    Acanthamoeba causes diseases such as Acanthamoeba keratitis (AK) which leads to permanent blindness and granulomatous Acanthamoeba encephalitis (GAE) where there is formation of granulomas in the brain. Current treatments such as chlorhexidine, diamidines, and azoles either exhibit undesirable side effects or require immediate and prolonged treatment for the drug to be effective or prevent relapse. Previously, antifungal drugs amphotericin B, nystatin, and fluconazole-conjugated silver with nanoparticles have shown significantly increased activity against Acanthamoeba castellanii. In this study, two functionally diverse tetrazoles were synthesized, namely 5-(3-4-dimethoxyphenyl)-1H-tetrazole and 1-(3-methoxyphenyl)-5-phenoxy-1H-tetrazole, denoted by T1 and T2 respectively. These compounds were evaluated for anti-Acanthamoeba effects at different concentrations ranging from 5 to 50 μM. Furthermore, these compounds were conjugated with silver nanoparticles (AgNPs) to enhance their efficacy. Particle size analysis showed that T1-AgNPs and T2-AgNPs had an average size of 52 and 70 nm respectively. After the successful synthesis and characterization of tetrazoles and tetrazole-conjugated AgNPs, they were subjected to anti-Acanthamoeba studies. Amoebicidal assay showed that at concentration 10 μM and above, T2 showed promising antiamoebic activities between the two compounds while encystation and excystation assays reveal that both T1 and T2 have inhibited differentiation activity against Acanthamoeba castellanii. Conjugation of T1 and T2 to AgNP also increased efficacy of tetrazoles as anti-Acanthamoeba agents. This may be due to the increased bioavailability as AgNP allows better delivery of treatment compounds to A. castellanii. Human cell cytotoxicity assay revealed that tetrazoles and AgNPs are significantly less toxic towards human cells compared with chlorhexidine which is known to cause undesirable side effects. Cytopathogenicity assay also revealed that T2 conjugated with AgNPs significantly reduced cytopathogenicity of A. castellanii compared with T2 alone, suggesting that T2-conjugated AgNP is an effective and safe anti-Acanthamoeba agent. The use of a synthetic azole compound conjugated with AgNPs can be an alternative strategy for drug development against A. castellanii. However, mechanistic and in vivo studies are needed to explore further translational values.
  20. Anwar A, Ting ELS, Anwar A, Ain NU, Faizi S, Shah MR, et al.
    AMB Express, 2020 Feb 03;10(1):24.
    PMID: 32016777 DOI: 10.1186/s13568-020-0960-9
    Acanthamoeba spp. are the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis (GAE). The current options to treat Acanthamoeba infections have limited success. Silver nanoparticles show antimicrobial effects and enhance the efficacy of their payload at the specific biological targets. Natural folk plants have been widely used for treating diseases as the phytochemicals from several plants have been shown to exhibit amoebicidal effects. Herein, we used natural products of plant or commercial sources including quercetin (QT), kolavenic acid (PGEA) isolated from plant extracts of Polyalthia longifolia var pendula and crude plant methanolic extract of Caesalpinia pulcherrima (CPFLM) as antiacanthamoebic agents. Furthermore, these plant-based materials were conjugated with silver nanoparticles (AgNPs) to determine the effects of the natural compounds and their nanoconjugates against a clinical isolate of A. castellanii from a keratitis patient (ATCC 50492) belonging to the T4 genotype. The compounds were conjugated with AgNPs and characterized by using ultraviolet visible spectrophotometry and atomic force microscopy. Quercetin coated silver nanoparticles (QT-AgNPs) showed characteristic surface plasmon resonance band at 443 nm and the average size distribution was found to be around 45 nm. The natural compounds alone and their nanoconjugates were tested for the viability of amoebae, encystation and excystation activity against A. castellanii. The natural compounds showed significant growth inhibition of A. castellanii while QT-AgNPs specifically exhibited enhanced antiamoebic effects as well as interrupted the encystation and excystation activity of the amoebae. Interestingly, these compounds and nanoconjugates did not exhibit in vitro cytotoxic effects against human cells. Plant-based compounds and extracts could be an interesting strategy in development of alternative therapeutics against Acanthamoeba infections.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links