Displaying publications 81 - 100 of 205 in total

Abstract:
Sort:
  1. Mohamed Amin Z, Koh SP, Yeap SK, Abdul Hamid NS, Tan CP, Long K
    Biomed Res Int, 2015;2015:687694.
    PMID: 26436094 DOI: 10.1155/2015/687694
    Maltodextrins that contain both simple sugars and polymers of saccharides have been widely used as ingredients in food products and pharmaceutical delivery systems. To date, no much work has been reported on the applications of maltodextrin from broken rice (RB) sources. Therefore, the objective of this work was to investigate the in vitro wound healing efficacy of RB maltodextrin at different conditions. Wounds treated with lower dextrose equivalent (DE) range (DE 10-14) of maltodextrins at a concentration of 10% obtained from RB were found to be able to heal the wounds significantly faster (p < 0.01) than maltodextrin with higher DE ranges (DE 15-19 and DE 20-24) and concentrations of 5% and 20%. The findings from both BrdU and MTT assay further confirmed its wound healing properties as the NIH 3T3 fibroblast wounded cells were able to proliferate without causing cytotoxic effect when wounded cell was treated with maltodextrin. All these findings indicated that the RB maltodextrin could perform better than the commercial maltodextrin at the same DE range. This study showed that RB maltodextrins had better functionality properties than other maltodextrin sources and played a beneficial role in wound healing application.
  2. Mirhosseini H, Tan CP
    J Sci Food Agric, 2010 Jun;90(8):1308-16.
    PMID: 20474048 DOI: 10.1002/jsfa.3928
    The constituents in a food emulsion interact with each other, either physically or chemically, determining the overall physico-chemical and organoleptic properties of the final product. Thus, the main objective of present study was to investigate the effect of emulsion components on beverage emulsion properties.
  3. Mirhosseini H, Tan CP, Yusof S, Hamid NS
    Phytochem Anal, 2008 Sep-Oct;19(5):429-37.
    PMID: 18435528 DOI: 10.1002/pca.1068
    Solid-phase microextraction (SPME) coupled to gas chromatography has been applied for the headspace analysis (HS) of 12 target flavour compounds in a model orange beverage emulsion. The main volatile flavour compounds studied were: acetaldehyde, ethyl acetate, alpha-pinene, ethyl butyrate, beta-pinene, myrcene, limonene, gamma-terpinene, octanal, decanal, linalool and citral (neral plus geranial). After screening the fibre type, the effect of other HS-SPME variables such as adsorption temperature (25-55 degrees C), extraction time (10-40 min), sample concentration (1-100% w/w), sample amount (5-10 g) and salt amount (0-30% w/w) were determined using a two-level fractional factorial design (2(5-2)) that was expanded further to a central composite design. It was found that an extraction process using a carboxen-polydimethylsiloxane fibre coating at 15 masculineC for 50 min with 5 g of diluted emulsion 1% (w/w) and 30% (w/w) of sodium chloride under stirring mode resulted in the highest HS extraction efficiency. For all volatile flavour compounds, the linearity values were accurate in the concentration ranges studied (r(2) > 0.97). Average recoveries that ranged from 90.3 to 124.8% showed a good accuracy for the optimised method. The relative standard deviation for six replicates of all volatile flavour compounds was found to be less than 15%. For all volatile flavour compounds, the limit of detection ranged from 0.20 to 1.69 mg/L.
  4. Mirhosseini H, Tan CP, Hamid NS, Yusof S
    J Agric Food Chem, 2007 Sep 19;55(19):7659-66.
    PMID: 17708646
    The possible relationships between the main emulsion components (namely, Arabic gum, xanthan gum, and orange oil) and the physicochemical properties of orange beverage emulsion were evaluated by using response surface methodology. The physicochemical emulsion property variables considered as response variables were emulsion stability, viscosity, fluid behavior, zeta-potential, and electrophoretic mobility. The independent variables had the most and least significant ( p < 0.05) effect on viscosity and zeta-potential, respectively. The quadratic effect of orange oil and Arabic gum, the interaction effect of Arabic gum and xanthan gum, and the main effect of Arabic gum were the most significant ( p < 0.05) effects on turbidity loss rate, viscosity, viscosity ratio, and mobility, respectively. The main effect of Arabic gum was found to be significant ( p < 0.05) in all response variables except for turbidity loss rate. The nonlinear regression equations were significantly ( p < 0.05) fitted for all response variables with high R (2) values (>0.86), which had no indication of lack of fit. The results indicated that a combined level of 10.78% (w/w) Arabic gum, 0.56% (w/w) xanthan gum, and 15.27% (w/w) orange oil was predicted to provide the overall optimum region in terms of physicochemical properties studied. No significant ( p > 0.05) difference between the experimental and the predicted values confirmed the adequacy of response surface equations.
  5. Mehrnoush A, Tan CP, Hamed M, Aziz NA, Ling TC
    Food Chem, 2011 Sep 1;128(1):158-64.
    PMID: 25214343 DOI: 10.1016/j.foodchem.2011.03.012
    This study investigated the possible relationship between the encapsulation variables, namely serine protease content (9-50mg/ml, X1), Arabic gum (0.2-10%(w/w), X2), maltodextrin (2-5%(w/w), X3) and calcium chloride (1.3-5.5%(w/w), X4) on the enzymatic properties of encapsulated serine protease. The study demonstrated that Arabic gum, maltodextrin and calcium chloride, as coating agents, protected serine protease from activity loss during freeze-drying. The overall optimum region resulted in a suitable freeze drying condition with a yield of 92% for the encapsulated serine protease, were obtained using 29.5mg/ml serine protease content, 5.1%(w/w) Arabic gum, 3.5%(w/w) maltodextrin and 3.4%(w/w) calcium chloride. It was found that the interaction effect of Arabic gum and calcium chloride improved the serine protease activity, and Arabic gum was the most effective amongst the examined coating agents. Thus, Arabic gum should be considered as potential protection in freeze drying of serine protease.
  6. Mediani A, Abas F, Maulidiani M, Khatib A, Tan CP, Ismail IS, et al.
    J Pharm Biomed Anal, 2016 Sep 05;128:302-312.
    PMID: 27318080 DOI: 10.1016/j.jpba.2016.06.003
    Herbal medicine has been proven to be an effective therapy offering a variety of benefits, such as moderate reduction in hypoglycemia, in the treatment and prevention of obesity and diabetes. Phyllanthus niruri has been used as a treatment for diabetes mellitus. Herein, the induction of type 2 diabetes in Sprague-Dawley rats was achieved by a low dose of streptozotocin (STZ) (25mg/kgbw). Here, we evaluated the in vivo antidiabetic properties of two concentrations (250 and 500mg/kg bw) of P. niruri via metabolomics approach. The administration of 500mg/kgbw of P. niruri extract caused the metabolic disorders of obese diabetic rats to be improved towards the normal state. The extract also clearly decreased the serum glucose level and improved the lipid profile in obese diabetic rats. The results of this study may contribute towards better understanding the molecular mechanism of this medicinal plant in managing diabetes mellitus.
  7. Mediani A, Abas F, Tan CP, Khatib A
    Antioxidants (Basel), 2014 May 07;3(2):358-70.
    PMID: 26784876 DOI: 10.3390/antiox3020358
    The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained.
  8. Mediani A, Abas F, Khatib A, Tan CP
    Molecules, 2013 Aug 29;18(9):10452-64.
    PMID: 23994970 DOI: 10.3390/molecules180910452
    The aim of the study was to analyze the influence of oven thermal processing of Cosmos caudatus on the total polyphenolic content (TPC) and antioxidant capacity (DPPH) of two different solvent extracts (80% methanol, and 80% ethanol). Sonication was used to extract bioactive compounds from this herb. The results showed that the optimised conditions for the oven drying method for 80% methanol and 80% ethanol were 44.5 °C for 4 h with an IC₅₀ of 0.045 mg/mL and 43.12 °C for 4.05 h with an IC₅₀ of 0.055 mg/mL, respectively. The predicted values for TPC under the optimised conditions for 80% methanol and 80% ethanol were 16.5 and 15.8 mg GAE/100 g DW, respectively. The results obtained from this study demonstrate that Cosmos caudatus can be used as a potential source of antioxidants for food and medicinal applications.
  9. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, et al.
    Plant Foods Hum Nutr, 2015 Jun;70(2):184-92.
    PMID: 25800644 DOI: 10.1007/s11130-015-0478-5
    The study investigated the changes in the metabolite, antioxidant and α-glucosidase inhibitory activities of Phyllanthus niruri after three drying treatments: air, freeze and oven dryings. Water extracts and extracts obtained using different solvent ratios of ethanol and methanol (50, 70, 80 and 100%) were compared. The relationships among the antioxidant, α-glucosidase inhibitory activity and metabolite levels of the extracts were evaluated using partial least-square analysis (PLS). The solvent selectivity was assessed based on the phytochemical constituents present in the extract and their concentrations quantitatively analyzed using high performance liquid chromatography. The freeze-dried P. niruri samples that were extracted with the mixture of ethanol or methanol with low ratio of water showed higher biological activity values compared with the other extracts. The PLS results for the ethanolic with different ratio and water extracts demonstrated that phenolic acids (chlorogenic acid and ellagic acid) and flavonoids were highly linked to strong α-glucosidase inhibitory and antioxidant activities.
  10. Mediani A, Abas F, Maulidiani M, Abu Bakar Sajak A, Khatib A, Tan CP, et al.
    J Physiol Biochem, 2018 May 15.
    PMID: 29766441 DOI: 10.1007/s13105-018-0631-3
    Diabetes mellitus (DM) is a chronic disease that can affect metabolism of glucose and other metabolites. In this study, the normal- and obese-diabetic rats were compared to understand the diabetes disorders of type 1 and 2 diabetes mellitus. This was done by evaluating their urine metabolites using proton nuclear magnetic resonance (1H NMR)-based metabolomics and comparing with controls at different time points, considering the induction periods of obesity and diabetes. The biochemical parameters of the serum were also investigated. The obese-diabetic model was developed by feeding the rats a high-fat diet and inducing diabetic conditions with a low dose of streptozotocin (STZ) (25 mg/kg bw). However, the normal rats were induced by a high dose of STZ (55 mg/kg bw). A partial least squares discriminant analysis (PLS-DA) model showed the biomarkers of both DM types compared to control. The synthesis and degradation of ketone bodies, tricarboxylic (TCA) cycles, and amino acid pathways were the ones most involved in the variation with the highest impact. The diabetic groups also exhibited a noticeable increase in the plasma glucose level and lipid profile disorders compared to the control. There was also an increase in the plasma cholesterol and low-density lipoprotein (LDL) levels and a decline in the high-density lipoprotein (HDL) of diabetic rats. The normal-diabetic rats exhibited the highest effect of all parameters compared to the obese-diabetic rats in the advancement of the DM period. This finding can build a platform to understand the metabolic and biochemical complications of both types of DM and can generate ideas for finding targeted drugs.
  11. Lo SK, Cheong LZ, Arifin N, Tan CP, Long K, Yusoff MS, et al.
    J Agric Food Chem, 2007 Jul 11;55(14):5595-603.
    PMID: 17571899
    Diacylglycerol (DAG) and triacylglycerol (TAG) as responses on optimization of DAG production using a dual response approach of response surface methodology were investigated. This approach takes the molecular equilibrium of DAG into account and allows for the optimization of reaction conditions to achieve maximum DAG and minimum TAG yields. The esterification reaction was optimized with four factors using a central composite rotatable design. The following optimized conditions yielded 48 wt % DAG and 14 wt % TAG: reaction temperature of 66.29 degrees C, enzyme dosage of 4 wt %, fatty acid/glycerol molar ratio of 2.14, and reaction time of 4.14 h. Similar results were achieved when the process was scaled up to a 10 kg production in a pilot packed-bed enzyme reactor. Lipozyme RM IM did not show any significant activity losses or changes in fatty acid selectivity on DAG synthesis during the 10 pilot productions. However, lipozyme RM IM displayed higher selectivity toward the production of oleic acid-enriched DAG. The purity of DAG oil after purification was 92 wt %.
  12. Lo SK, Baharin BS, Tan CP, Lai OM
    J Chromatogr Sci, 2004 Mar;42(3):145-54.
    PMID: 15023251
    Separation of 1,2(2,3)- and 1,3-positional isomers of diacylglycerols (DAG) from vegetable oils by reversed-phase high-performance liquid chromatography (RP-HPLC) is investigated. The method is based on isocratic elution using 100% acetonitrile and UV detection at 205 nm. The following elution order of DAG molecular species is identified: 1,3-dilinolein < 1,2-dilinolein < 1,3-dimyristin < 1-oleoyl-3-linoleoyl-glycerol < 1,2-dimyristoyl-rac-glycerol < 1(2)-oleoyl-2(3)-linoleoyl-glycerol < 1-linolenoyl-3-stearoyl-glycerol < 1(2)-linolenoyl-2(3)-stearoyl-glycerol < 1,3-diolein < 1-palmitoyl-3-oleoyl-glycerol < 1,2-dioleoyl-sn-glycerol < 1(2)-palmitoyl-2(3)-oleoyl-glycerol < 1-linoleoyl-3-stearoyl-glycerol < 1,3-dipalmitin < 1(2)-linoleoyl-2(3)-stearoyl-glycerol < 1-oleoyl-3-stearoyl-glycerol < 1,2-dipalmitoyl-rac-glycerol < 1-palmitoyl-3-stearoyl-sn-glycerol < 1,3-distearin < 1,2-distearoyl-rac-glycerol. Linearity is observed over three orders of magnitude. Limits of detection and quantitation range 0.2-0.7 microg/mL for 1,3-dilinolein to 0.6-1.9 microg/mL for 1,2-dioleoyl-sn-glycerol, respectively. Precision and accuracy of the method are also demonstrated. The method is developed to separate mixtures of DAG molecular species produced from edible oils.
  13. Liu Y, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Chem, 2022 Mar 15;372:131305.
    PMID: 34653777 DOI: 10.1016/j.foodchem.2021.131305
    High internal phase emulsions (HIPEs) show promising application in food and cosmetic industries. In this work, diacylglycerol (DAG) was applied to fabricate water-in-oil (W/O) HIPEs. DAG-based emulsion can hold 60% water and the emulsion rigidity increased with water content, indicating the water droplets acted as "active fillers". Stable HIPE with 80% water fraction was formed through the combination of 6 wt% DAG with 1 wt% polyglycerol polyricinoleate (PGPR). The addition of 1 w% kappa (κ)-carrageenan and 0.5 M NaCl greatly reduced the droplet size and enhanced emulsion rigidity, and the interfacial tension of the internal phase was reduced. Benefiting from the Pickering crystals-stabilized interface by DAG as revealed by the microscopy and enhanced elastic modulus of emulsions with the gelation agents, the HIPEs demonstrated good retaining ability for anthocyanin and β-carotene. This study provides insights for the development of W/O HIPEs to fabricate low-calories margarines, spread or cosmetic creams.
  14. Liu A, He M, Liu C, Ye Z, Tan CP, Liu Y, et al.
    J Agric Food Chem, 2024 Mar 27;72(12):6118-6132.
    PMID: 38477232 DOI: 10.1021/acs.jafc.3c08697
    Cardiovascular diseases are caused by hypercholesterolemia. Astaxanthin (AST) has been reported to exhibit antioxidant and anti-inflammatory properties. However, its bioavailability is poor because of low solubility and instability. In order to improve the bioavailability of AST, we developed an intestinal-responsive composite carrier termed as "liposomes in micropheres" incorporating N-succinyl-chitosan (NSC)-poly(ethylene glycol) (PEG) liposomes that functionalized by neonatal Fc receptors (FcRn) into hydrogels of sodium alginate (SA) and carboxymethyl chitosan (CMCS). In the AST NSC/HSA-PEG liposomes@SA/CMCS microspheres, the AST's encapsulation efficiency (EE) was 96.26% (w/w) and its loading capacity (LC) was 6.47% (w/w). AST NSC/HSA-PEG liposomes had stability in the gastric conditions and achieved long-term release of AST in intestinal conditions. Then, AST NSC/HSA-PEG liposomes@SA/CMCS bind to intestinal epithelial cell targets by the neonatal Fc receptor. In vitro permeation studies show that there was a 4-fold increase of AST NSC/HSA-PEG liposomes@SA/CMCS in AST permeation across the intestinal epithelium. Subsequent in vivo experiments demonstrated that the composite carrier exhibited a remarkable mucoadhesive capacity, allowing for extended intestinal retention of up to 12 h, and it displayed deep penetration through the mucus layer, efficiently entering the intestinal villi epithelial cells, and enhancing the absorption of AST and its bioavailability in vivo. And oral administration of AST NSC/HSA-PEG liposomes@SA/CMCS could effectively prevent hypercholesterolemia caused by a high-fat, high-cholesterol diet (HFHCD). These advancements highlight the potential of NSC/HSA-PEG liposomes@SA/CMCS composite carriers for targeted and oral uptake of hydrophobic bioactives.
  15. Lin YK, Show PL, Yap YJ, Tan CP, Ng EP, Ariff AB, et al.
    J Biosci Bioeng, 2015 Dec;120(6):684-9.
    PMID: 26111602 DOI: 10.1016/j.jbiosc.2015.04.013
    Purification of cyclodextrin glycosyl transferase (CGTase) from Bacillus cereus using polyethylene glycol (PEG)-potassium phosphates aqueous two-phase flotation (ATPF) system was studied in this paper. The effects of varying PEG molecular weight, tie-line length (TLL) value, volume ratio (VR), pH value, crude concentration and gas nitrogen flotation time were investigated. The optimal condition for purification of CGTase was attained at 18.0% (w/w) PEG 8000, 7.0% (w/w) potassium phosphates, VR of 3.0, 20% (w/w) crude load at pH 7, and 80 min nitrogen flotation time at a flow rate of 5 L/min. With this optimal condition, purification factor (PFT) of 21.8 and a yield (YT) of 97.1% were attained. CGTase was successfully purified in a single downstream processing step using the ATPF.
  16. Lim TW, Lim RLH, Pui LP, Tan CP, Ho CW
    Heliyon, 2023 Oct;9(10):e21025.
    PMID: 37876430 DOI: 10.1016/j.heliyon.2023.e21025
    Nowadays, the demand for using healthy natural pigments (betacyanins) in the food industry is increasing. The present study aimed to overcome the circumstances that render the betacyanins instability in the red dragon fruit drink using mild approaches. These included optimised fermentation, incorporation of anionic polysaccharide mixture solution [xanthan gum (XG, 0.30-0.40 %, w/v) and carboxymethyl cellulose (CMC, 0.50-0.90 %, w/v)] and also addition of citric acid (CA, 0.05-0.20 %, w/v). The results of this study showed that the hydrocolloid mixture solution of XG and CMC significantly increased the samples' viscosity, pH and °Brix but reduced the aw, while betacyanins concentration had no significant change. The incorporation of CA at increasing concentration only reduced the samples' pH significantly without affecting the viscosity, aw and °Brix. Among all fermented samples, Formulation 3E (0.40 % XG + 0.50 % CMC + 0.20 % CA) had achieved the desired commercial reference viscosity while also successfully minimised betacyanins degradation from 60.18 % to 14.72 %, had the best pH stability and no significant change in viscosity, aw and °Brix values after 4-week storage at 25 °C. The fermented red dragon fruit drink with betacyanins stabilised by Formulation 3E can be produced and served as an independent functional drink product and as a stable, functional ingredient (natural colourant) for the food industry.
  17. Lim TW, Choo KY, Lim RLH, Pui LP, Tan CP, Ho CW
    Heliyon, 2023 Nov;9(11):e21940.
    PMID: 38027851 DOI: 10.1016/j.heliyon.2023.e21940
    Red dragon fruit (RDF) is well-known for its high nutritional content, especially the red pigment betacyanins that possess high antioxidant activity. Natural fermentation is an ancient yet outstanding technique that relies on the autochthonous microbiota from fruits and vegetables surfaces to preserve and improve the nutritional values and quality of the food product. The present study was to evaluate and identify the indigenous microbial community (bacteria and fungi) that are involved in the natural fermentation of RDF. Results revealed a total of twenty bacterial pure cultures and nine fungal pure cultures were successfully isolated from fermented red dragon fruit drink (FRDFD). For the first time, the PCR amplification of 16S rRNA and ITS regions and sequence analysis suggested nine genera of bacteria and three genera of fungi (Aureobasidium pullulans, Clavispora opuntiae, and Talaromyces aurantiacus) present in the FRDFD. Four dominant (≥10 % isolates) bacteria species identified from FRDFD were Klebsiella pneumonia, Brevibacillus parabrevis, Bacillus tequilensis and Bacillus subtilis. The carbohydrate fermentation test showed that all the indigenous microbes identified were able to serve as useful starter culture by fermenting sucrose and glucose, thereby producing acid to lower the pH of FRDFD to around pH 4 for better betacyanins stability. The present study provides a more comprehensive understanding of the indigenous microbial community that serves as the starter culture in the fermentation of RDF. Besides, this study provides a useful guide for future research to be conducted on studying the rare bacterial strains (such as B. tequilensis) identified from the FRDFD for their potential bioactivities and applications in medical treatment and functional foods industries.
  18. Lim PK, Jinap S, Sanny M, Tan CP, Khatib A
    J Food Sci, 2014 Jan;79(1):T115-21.
    PMID: 24344977 DOI: 10.1111/1750-3841.12250
    The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected.
  19. Liang H, Qin X, Tan CP, Li D, Wang Y
    J Agric Food Chem, 2018 Nov 21;66(46):12361-12367.
    PMID: 30394748 DOI: 10.1021/acs.jafc.8b04804
    Docosahexaenoyl and eicosapentaenoyl ethanolamides (DHEA and EPEA) have physiological functions, including immunomodulation, brain development, and anti-inflammation, but their efficient production is still unresolved. In this study, choline-chloride-based natural deep eutectic solvents are used as media to improve the production of DHEA and EPEA. The water content showed a key effect on the reactant conversion. Adding water to choline chloride-glucose (CG, molar ratio of 5:2) led to a significant increase (13.03% for EPEA and 27.95% for DHEA) in the yields after 1 h. The high yields of EPEA (96.84%) and DHEA (90.06%) were obtained under the optimized conditions [fish oil ethyl esters/ethanolamine molar ratio of 1:2, temperature of 60 °C, 1 h, enzyme loading of 2195 units, and CG containing 8.50% water of 43.30% (w/w, relative to total reactants)]. The products could be easily separated using centrifugation. In summary, the research has the potential to produce fatty acyl ethanolamides.
  20. Lian W, Li D, Zhang L, Wang W, Faiza M, Tan CP, et al.
    Enzyme Microb Technol, 2018 Oct;117:56-63.
    PMID: 30037552 DOI: 10.1016/j.enzmictec.2018.06.007
    Conjugated linoleic acid (CLA)-rich triacylglycerols (TAG) have received significant attention owing to their health promoting properties. In this study, CLA-rich TAG were successfully synthesized by an immobilized mutant lipase (MAS1-H108A)-catalyzed esterification of CLA-rich fatty acids and glycerol under vacuum. MAS1-H108A was first immobilized onto ECR1030 resin. Results showed that the lipase/support ratio of 41 mg/g was suitable for the immobilization and the thermostability of immobilized MAS1-H108A was greatly enhanced. Subsequently, the immobilized MAS1-H108A was employed for the synthesis of CLA-rich TAG and 95.21% TAG with 69.19% CLA was obtained under the optimized conditions. The TAG content (95.21%) obtained by immobilized MAS1-H108A is the reported highest value thus far, which was significantly higher than that (9.26%) obtained by Novozym 435 under the same conditions. Although the TAG content comparable to the results obtained in this study could also be obtained by Novozym 435, the used enzyme amount is approximately 5-fold of the immobilized MAS1-H108A. Additionally, the immobilized MAS1-H108A exhibited excellent recyclability during esterification retaining 95.11% of its initial activity after 10 batches. Overall, such immobilized mutant lipase with superior esterification activity and recyclability has the potential to be used in oils and fats industry.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links