Displaying publications 81 - 100 of 251 in total

Abstract:
Sort:
  1. Krishnan J, Mathiarasan L
    J Vector Borne Dis, 2019 1 9;55(3):189-196.
    PMID: 30618444 DOI: 10.4103/0972-9062.249127
    Background & objectives: : Increase of vector-borne diseases (VBDs) in India has posed a question on the situation in Lakshadweep Islands, where VBDs are reported from time-to-time. The present investigation was aimed to assess the faunastic situation of the prevailing vectors along with their breeding sites in different islands of the Lakshadweep.

    Methods: : Extensive surveys were carried out from November 2017 to January 2018 (post-monsoon season) randomly in the nine inhabited islands of Lakshadweep for conducting faunastic studies on mosquitoes and to know the basic binomics like breeding and resting preference of mosquitoes. The study islands included, Kavaratti, Agatti, Chetlat, Bitra, Amini, Kadmath, Andrott, Kalpeni and Kiltan. Both immature and adult collections were carried out by standard/appropriate sampling techniques. The obtained data were calculated and analysed in terms of different entomological indices.

    Results: : A total of 3356 mosquitoes were collected during the study period which comprised of 16 species from nine genera. Out of the 16 species, six belonged to mosquito vectors. The collection included malaria vector, Anopheles stephensi; Japanese encephalitis vector, Culex tritaeniorhynchus; Bancroftian filariasis vector, Cx. quinquefasciatus; Brugian filariasis vector, Mansonia uniformis; and dengue and chikungunya vectors, Stegomya albopicta and St. aegypti. Stegomya albopicta was the most predominant species observed constituting 54% of the catch, followed by Cx. quinquefasciatus, An. stephensi, Cx. tritaeniorhynchus, and St. aegypti constituting 10.5, 6, 3 and 1.2%, respectively. Apart from vector species many non-vectors such as Heizmannia chandi, An. subpictus, An. varuna, Cx. sitiens, Cx. minutissimus, Cx. rubithoracis, Fredwardsius vittatus, Lutzia fuscana, Malaya genurostris and Armigeres subalbatus were also present in the study area. In Kavaratti Island, the capital of Lakshadweep, a non-vector species of sandfly, Sergentomyia (Parrotomyia) babu was observed during the indoor resting collection. The major breeding sites which supported various mosquito species included, discarded plastic containers, tree holes, open sintex tanks (water storage tanks), unused wells, discarded tyres, discarded iron pots, unused and damaged boats, cement tanks, pleated plastic sheets, coral holes, pits and irrigation canals, discarded washing machines, and Colocasia plant leaf axils. Breteau index ranged between 65.3 and 110, CI ranged between 63.64 and 72.41; and HI ranged between 38.46 and 70 among the various islands.

    Interpretation & conclusion: : Entomological indices such as house index (HI), breteau index (BI) and pupal index (PI) were high in all the nine islands and exceeded the threshold levels specified by WHO, indicating high risk for dengue virus transmission in case of outbreaks. Occurrence of vector as well as non-vector species indicates that the global change in climate is causing notable changes in terms of breeding of vector and non-vector species in the islands. With the reported cases of VBDs and the presence of vectors species in Lakshadweep Islands, a stringent control measure needs to be implemented at the Lakshadweep Islands.

    Matched MeSH terms: Anopheles/parasitology; Anopheles/virology
  2. Rongnopaurt P, Rodpradit P, Kongsawadworakul P, Sithiprasasna R, Linthicum KJ
    J Am Mosq Control Assoc, 2006 Jun;22(2):192-7.
    PMID: 17014059
    Anopheles (Cellia) maculatus Theobald is a major malaria vector in southern Thailand and peninsular Malaysia, and previous population genetic studies suggested that mountain ranges act as barriers to gene flow. In this study, we examine the genetic variance among 12 collections of natural populations in southern Thailand by analyzing 7 microsatellite loci. Based on analysis of molecular variance (AMOVA), three geographic populations of An. maculatus are suggested. The southern population exists in western Thailand north of 12 degrees north latitude. Mosquitoes to the south fall into two genetic populations: 1) the middle southern collections located on the west side of the Phuket mountain range between 8 degrees and 10 degrees north latitude, and 2) the southern collections located on the east of the Phuket mountain range located between approximately 6.5 degrees and 11.5 degrees north latitude. AMOVA revealed significant genetic differentiation between northern and middle southern and southern populations. The middle southern population was moderately differentiated from the southern population. Furthermore, gene flow was restricted between proximal collections located on different sides of the Phuket mountain range. Collections separated by 50 km exhibited restriction of gene flow when separated by geographic barriers, whereas greater gene flow was evident among collections 650 km apart but without geographic barriers.
    Matched MeSH terms: Anopheles/genetics*
  3. Hii JL, Chew M, Sang VY, Munstermann LE, Tan SG, Panyim S, et al.
    J Med Entomol, 1991 Sep;28(5):675-84.
    PMID: 1682492
    During the intermonsoon period from mid-September to mid-October 1986, wild-caught Anopheles balabacensis Baisas females were marked and released in a host-choice experiment. Association between capture and recapture of marked mosquitoes from human and bovid hosts and blood meal host identification of recaptured females were determined on a daily basis. Although the mark-recapture and blood meal data indicated behavioral heterogeneity between buffalo and human biters, restriction endonuclease fragment length polymorphism analysis revealed no differences in repeat sequence profiles. Doubly-marked recaptures strongly indicated a "learning" component involved in a separate host preference experiment. In a "habitat loyalty" experiment conducted in January 1987, females of An. balabacensis preferentially returned to the resting sites (indoor surfaces and exit traps) where they were first caught. Of nine isozyme loci found to be polymorphic, the genotypic frequencies of Esterase-3 and Isocitrate dehydrogenase-3 were different in "faithfully" endophilic and exophilic subpopulations. Genetic heterozygosity, as determined by polyacrylamide gel electrophoresis, was greater in exophilic than endophilic population components. These results confirm that genetic and learning components can significantly influence house resting and host seeking behavior and may contribute to local epidemiological patterns of malaria transmission observed in Sabah, Malaysia.
    Matched MeSH terms: Anopheles/genetics*; Anopheles/physiology
  4. Ali WN, Ahmad R, Nor ZM, Ismail Z, Lim LH
    PMID: 21710845
    Mosquitoes in malaria endemic areas needs to be monitored constantly in order to detect demographic changes that could affect control measures. A 12-month mosquito population survey was conducted in several malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia. Collection of mosquitoes using a human landing catch technique was carried out indoors and outdoors for 12 hours from 7:00 PM to 7:00 AM for 42 nights. Anopheles maculatus Theobald (31.0%), Armigeres flavus Leicester (11.3%), Armigeres annulitarsis Leicester (11.0%), Culex vishnui Theobald (9.6%) and Aedes albopictus Skuse (7.0%) were the predominant species caught in the study area. The salivary gland and midgut of all anopheline mosquitoes were dissected to determine the presence of malaria parasites but none were positive. A high rate of human biting by An. maculatus was detected during December, but the rate was lower in January. Mosquito larvae were carried by the rapid current of the river downstream causing a decrease in the larvae population. Of the five predominant species, only Ar. annulitarsis exhibited a significant positive correlation in numbers with monthly rainfall (p < 0.05). An. maculatus biting activity peaked during 10:00 PM to 11:00 PM. Ae. albopictus, Ar. annulitarsis, and Ar. flavus exhibited similar activities which peaked during 7:00 PM to 8.00 PM.
    Matched MeSH terms: Anopheles*
  5. Baimai V
    PMID: 3238480
    Until recently, very little was known of Anopheles species complexes and their relationships to epidemiology and malaria transmission in Southeast Asia. During the past eight years, extensive studies on the genetics of natural populations of anopheline mosquitoes in this region, involving the interdisciplinary efforts of taxonomists, operational entomologists and biologists, have revealed groups of cryptic species of Anopheles vectors, particularly the An. leucos phyrus group. This species group comprise seventeen species and two subspecies widely distributed in the forested areas of Southeast Asia. Among these species. An. dirus Peyton and Harrison, has been shown by cytogenetic and morphological studies to be a complex of at least seven isomorphic species, provisionally designated species A, B, C, D, E, F and takasagoensis, on the Southeast Asian mainland. Cytological identification of these species is based on distinct banding patterns of salivary gland polytene chromosomes as well as heterochromatin differences in mitotic karyotypes. The five species found in Thailand (A-D, F) exhibit distinct geographic distributions. Species A is widespread throughout Thailand except in the south. Species B had been found in sympatry with species C in southern Thailand and both seem to show north-south clinal geographic variation. Species D is common on the west side of southern Thailand and along the Thai-Burmese border in sympatry with species A. Species F, An. nemophilous Peyton and Ramalingam, has been found in a population at the Thai-Malaysian border in this study although it was known to be common in southern and western Thailand and Peninsular Malaysia. Species E is known only from western India. The five species found in Thailand also exhibit seasonal variation in relative abundance and different nocturnal biting cycles. Chromosomal polymorphisms have been observed in mitotic and polytene chromosomes of An. dirus A and D. Species B and C also show heterochromatin variation in the sex chromosomes, but are monomorphic for the standard sequence in polytene chromosomes. These biological characteristics of the An. dirus complex may have implications for understanding the epidemiology of malaria in Southeast Asia. Recent cytogenetic studies of wild-caught samples of An. leucosphyrus from Sumatra, Kalimantan and southern Thailand have revealed the presence of two distinct species within this taxon. Species A is widely distributed in southern Thailand, East Malaysia and Kalimantan, while species B is confined to Sumatra. The two isomorphic species are vectors of human malaria within their range of distribution.(ABSTRACT TRUNCATED AT 400 WORDS)
    Matched MeSH terms: Anopheles/classification; Anopheles/genetics*
  6. White NJ
    Clin Infect Dis, 2008 Jan 15;46(2):172-3.
    PMID: 18171246 DOI: 10.1086/524889
    Matched MeSH terms: Anopheles/parasitology
  7. Antinori S, Galimberti L, Milazzo L, Corbellino M
    Acta Trop, 2013 Feb;125(2):191-201.
    PMID: 23088834 DOI: 10.1016/j.actatropica.2012.10.008
    Plasmodium knowlesi was initially identified in the 30s as a natural Plasmodium of Macaca fascicularis monkey also capable of experimentally infecting humans. It gained a relative notoriety in the mid-30s as an alternative to Plasmodium vivax in the treatment of the general paralysis of the insane (neurosyphilis). In 1965 the first natural human infection was described in a US military surveyor coming back from the Pahang jungle of the Malaysian peninsula. P. knowlesi was again brought to the attention of the medical community when in 2004, Balbir Singh and his co-workers reported that about 58% of malaria cases observed in the Kapit district of the Malaysian Borneo were actually caused by P. knowlesi. In the following years several reports showed that P. knowlesi is much more widespread than initially thought with cases reported across Southeast Asia. This infection should also be considered in the differential diagnosis of any febrile travellers coming back from a recent travel to forested areas of Southeast Asia. P. knowlesi can cause severe malaria with a rate of 6-9% and with a case fatality rate of 3%. Respiratory distress, acute renal failure, shock and hyperbilirubinemia are the most frequently observed complications of severe P. knowlesi malaria. Chloroquine is considered the treatment of choice of uncomplicated malaria caused by P. knowlesi.
    Matched MeSH terms: Anopheles/parasitology
  8. Sabbatani S, Fiorino S, Manfredi R
    Infez Med, 2012 Mar;20(1):5-11.
    PMID: 22475654
    Epidemic foci of Plasmodium knowlesi malaria have been identified during the past ten years in Malaysia, in particular in the States of Sarawak and Sabah (Malaysia Borneo), and in the Pahang region (peninsular Malaysia). Based on a review of the available recent international literature, the authors underline the importance of molecular biology examinations, polymerase chain reactions (PCR), performed with primers specific for P. knowlesi, since the current microscopic examination (haemoscope) may fail to distinguish P. knowlesi from Plasmodium malariae, due to the very similar appearance of the two parasites. P. knowlesi has been described as the causal agent of life-threatening and lethal forms of malaria: its clinical picture is more severe when compared with that of P. malariae, since the disease is characterized by greater parasitaemia, as opposed to that documented in the course of P. malariae disease. The most effective carrier is Anopheles leucosphyrus: this mosquito is attracted by both humans and monkeys. Among primates, the natural hosts of P. knowlesi are Macaca fascicularis and Macaca nemestina, while Saimiri scirea and Macaca mulatta, which cannot become infected in nature, may be useful in experimental models. When underlining the potentially severe evolution, we note the key role played by prompt disease recognition, which is expected to be more straightforward in patients monitored in endemic countries at high risk, but should be carefully implemented for subjects being admitted to hospital in Western countries suffering from the typical signs and symptoms of malaria, after travelling in South-East Asia where they were engaged in excursions in the tropical forest (trekking, and similar outdoor activities). In these cases, the diagnosis should be prompt, and suitable treatment should follow. According to data in the literature, in non-severe cases chloroquine proves very effective against P. knowlesi, achieving the disappearance of signs and symptoms in 96% of cases after only 24 hours after treatment start. In the light of the emerging epidemiological data, P. knowlesi should be added to Plasmodium vivax, Plasmodium ovale, P. malariae, and Plasmodium falciparum, as the fifth aetiological agent of malaria. During the next few years, it will become mandatory to plan an appropriate surveillance program of the epidemiological evolution, paying also great attention to the clinical features of patients affected by P. knowlesi malaria, which are expected to worsen according to the time elapsed; some studies seem to point out greater severity according to increased parasitaemia, paralleling the increased interhuman infectious passages of the plasmodium.
    Matched MeSH terms: Anopheles
  9. Vythilingam I, Lim YA, Venugopalan B, Ngui R, Leong CS, Wong ML, et al.
    Parasit Vectors, 2014;7:436.
    PMID: 25223878 DOI: 10.1186/1756-3305-7-436
    While transmission of the human Plasmodium species has declined, a significant increase in Plasmodium knowlesi/Plasmodium malariae cases was reported in Hulu Selangor, Selangor, Malaysia. Thus, a study was undertaken to determine the epidemiology and the vectors involved in the transmission of knowlesi malaria.
    Matched MeSH terms: Anopheles/classification; Anopheles/parasitology*
  10. Vythilingam I
    Trop Biomed, 2010 Apr;27(1):1-12.
    PMID: 20562807 MyJurnal
    Plasmodium knowlesi in humans is life threatening, is on the increase and has been reported from most states in Malaysia. Anopheles latens and Anopheles cracens have been incriminated as vectors. Malaria is now a zoonoses and is occurring in malaria free areas of Malaysia. It is also a threat to eco-tourism. The importance of the vectors and possible control measures is reviewed here.
    Matched MeSH terms: Anopheles/parasitology*; Anopheles/physiology
  11. Collins WE, Contacos PG, Garnham PC, Warren M, Skinner JC
    J Parasitol, 1972 Feb;58(1):123-8.
    PMID: 4335047
    Matched MeSH terms: Anopheles
  12. Sum JS, Lee WC, Amir A, Braima KA, Jeffery J, Abdul-Aziz NM, et al.
    Parasit Vectors, 2014;7:309.
    PMID: 24993022 DOI: 10.1186/1756-3305-7-309
    Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene.
    Matched MeSH terms: Anopheles/genetics*
  13. Chua TH, Manin BO, Daim S, Vythilingam I, Drakeley C
    PLoS Negl Trop Dis, 2017 Oct;11(10):e0005991.
    PMID: 28968395 DOI: 10.1371/journal.pntd.0005991
    BACKGROUND: Anopheles balabacensis of the Leucospyrus group has been confirmed as the primary knowlesi malaria vector in Sabah, Malaysian Borneo for some time now. Presently, knowlesi malaria is the only zoonotic simian malaria in Malaysia with a high prevalence recorded in the states of Sabah and Sarawak.

    METHODOLOGY/PRINCIPAL FINDINGS: Anopheles spp. were sampled using human landing catch (HLC) method at Paradason village in Kudat district of Sabah. The collected Anopheles were identified morphologically and then subjected to total DNA extraction and polymerase chain reaction (PCR) to detect Plasmodium parasites in the mosquitoes. Identification of Plasmodium spp. was confirmed by sequencing the SSU rRNA gene with species specific primers. MEGA4 software was then used to analyse the SSU rRNA sequences and bulid the phylogenetic tree for inferring the relationship between simian malaria parasites in Sabah. PCR results showed that only 1.61% (23/1,425) of the screened An. balabacensis were infected with one or two of the five simian Plasmodium spp. found in Sabah, viz. Plasmodium coatneyi, P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Sequence analysis of SSU rRNA of Plasmodium isolates showed high percentage of identity within the same Plasmodium sp. group. The phylogenetic tree based on the consensus sequences of P. knowlesi showed 99.7%-100.0% nucleotide identity among the isolates from An. balabacensis, human patients and a long-tailed macaque from the same locality.

    CONCLUSIONS/SIGNIFICANCE: This is the first study showing high molecular identity between the P. knowlesi isolates from An. balabacensis, human patients and a long-tailed macaque in Sabah. The other common simian Plasmodium spp. found in long-tailed macaques and also detected in An. balabacensis were P. coatneyi, P. inui, P. fieldi and P. cynomolgi. The high percentage identity of nucleotide sequences between the P. knowlesi isolates from the long-tailed macaque, An. balabacensis and human patients suggests a close genetic relationship between the parasites from these hosts.

    Matched MeSH terms: Anopheles/parasitology*
  14. Sandosham AA
    Med J Malaysia, 1984 Mar;39(1):5-20.
    PMID: 6334800
    Matched MeSH terms: Anopheles
  15. EYLES DE, FONG YL, DUNN FL, GUINN E, WARREN M, SANDOSHAM AA
    Am J Trop Med Hyg, 1964 Mar;13:248-55.
    PMID: 14125875
    Matched MeSH terms: Anopheles*
  16. Koh GJ, Ismail PK, Koh D
    Saf Health Work, 2019 Mar;10(1):122-124.
    PMID: 30949391 DOI: 10.1016/j.shaw.2018.09.002
    Simian malaria is a zoonotic disease caused by Plasmodium knowlesi infection. The common natural reservoir of the parasite is the macaque monkey and the vector is the Anopheles mosquito. Human cases of P. knowlesi infection has been reported in all South East Asian countries in the last decade, and it is currently the most common type of malaria seen in Malaysia and Brunei. Between 2007-2017, 73 cases of P. knowlesi infection were notified and confirmed to the Ministry of Health in Brunei. Of these, 15 cases (21%) were documented as work-related, and 28 other cases (38%) were classified as probably related to work (due to incomplete history). The occupations of those with probable and confirmed work related infections were border patrol officers, Armed Forces and security personnel, Department of Forestry officers, boatmen and researchers. The remaining cases classified as most likely not related to work were possibly acquired via peri-domestic transmission. The risk of this zoonotic infection extends to tourists and overseas visitors who have to travel to the jungle in the course of their work. It can be minimised with the recommended use of prophylaxis for those going on duty into the jungles, application of mosquito/insect repellants, and use of repellant impregnated uniforms and bed nets in jungle camp sites.
    Matched MeSH terms: Anopheles
  17. Sogan N, Kala S, Kapoor N, Nagpal BN, Ramlal A, Nautiyal A
    World J Microbiol Biotechnol, 2023 Apr 01;39(6):142.
    PMID: 37004584 DOI: 10.1007/s11274-023-03570-y
    Mosquitoes are infectious vectors for a wide range of pathogens and parasites thereby transmitting several diseases including malaria, dengue, Zika, Japanese encephalitis and chikungunya which pose a major public health concern. Mostly synthetic insecticides are usually applied as a primary control strategy to manage vector-borne diseases. However excessive and non-judicious usage of such chemically derived insecticides has led to serious environmental and health issues owing to their biomagnification ability and increased toxicity towards non-target organisms. In this context, many such bioactive compounds originating from entomopathogenic microbes serve as an alternative strategy and environmentally benign tool for vector control. In the present paper, the entomopathogenic fungus, Lecanicillium lecanii (LL) was processed to make the granules. Developed 4% LL granules have been characterized using the technique of Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The developed formulation was also subjected to an accelerated temperature study at 40 °C and was found to be stable for 3 months. Further, GCMS of the L. lecanii was also performed to screen the potential biomolecules present. The developed formulation was found to be lethal against Anopheles culicifacies with an LC50 value of 11.836 µg/mL. The findings from SEM and histopathology also substantiated the mortality effects. Further, the SEM EDX (energy dispersive X-ray) studies revealed that the treated larvae have lower nitrogen content which is correlated to a lower level of chitin whereas the control ones has higher chitin content and healthy membranes. The developed LL granule formulation exhibited high toxicity against Anopheles mosquitoes. The granule formulations can be used as an effective biocontrol strategy against malaria-causing mosquitoes.
    Matched MeSH terms: Anopheles*
  18. Charon J, Grigg MJ, Eden JS, Piera KA, Rana H, William T, et al.
    PLoS Pathog, 2019 12;15(12):e1008216.
    PMID: 31887217 DOI: 10.1371/journal.ppat.1008216
    Eukaryotes of the genus Plasmodium cause malaria, a parasitic disease responsible for substantial morbidity and mortality in humans. Yet, the nature and abundance of any viruses carried by these divergent eukaryotic parasites is unknown. We investigated the Plasmodium virome by performing a meta-transcriptomic analysis of blood samples taken from patients suffering from malaria and infected with P. vivax, P. falciparum or P. knowlesi. This resulted in the identification of a narnavirus-like sequence, encoding an RNA polymerase and restricted to P. vivax samples, as well as an associated viral segment of unknown function. These data, confirmed by PCR, are indicative of a novel RNA virus that we term Matryoshka RNA virus 1 (MaRNAV-1) to reflect its analogy to a "Russian doll": a virus, infecting a parasite, infecting an animal. Additional screening revealed that MaRNAV-1 was abundant in geographically diverse P. vivax derived from humans and mosquitoes, strongly supporting its association with this parasite, and not in any of the other Plasmodium samples analyzed here nor Anopheles mosquitoes in the absence of Plasmodium. Notably, related bi-segmented narnavirus-like sequences (MaRNAV-2) were retrieved from Australian birds infected with a Leucocytozoon-a genus of eukaryotic parasites that group with Plasmodium in the Apicomplexa subclass hematozoa. Together, these data support the establishment of two new phylogenetically divergent and genomically distinct viral species associated with protists, including the first virus likely infecting Plasmodium parasites. As well as broadening our understanding of the diversity and evolutionary history of the eukaryotic virosphere, the restriction to P. vivax may be of importance in understanding P. vivax-specific biology in humans and mosquitoes, and how viral co-infection might alter host responses at each stage of the P. vivax life-cycle.
    Matched MeSH terms: Anopheles
  19. Gater BAR, Rajamony PD
    Matched MeSH terms: Anopheles
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links