Displaying publications 81 - 97 of 97 in total

Abstract:
Sort:
  1. Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ
    Int J Nanomedicine, 2019;14:1633-1657.
    PMID: 30880970 DOI: 10.2147/IJN.S184723
    Conventional cancer treatment techniques show several limitations including low or no specificity and consequently a low efficacy in discriminating between cancer cells and healthy cells. Recent nanotechnology developments have introduced smart and novel therapeutic nanomaterials that take advantage of various targeting approaches. The use of nanotechnology in medicine and, more specifically, drug delivery is set to spread even more rapidly than it has over the past two decades. Currently, many nanoparticles (NPs) are under investigation for drug delivery including those for cancer therapy. Targeted nanomaterials bind selectively to cancer cells and greatly affect them with only a minor effect on healthy cells. Gold nanoparticles (Au-NPs), specifically, have been identified as significant candidates for new cancer therapeutic modalities because of their biocompatibility, easy functionalization and fabrication, optical tunable characteristics, and chemophysical stability. In the last decade, there has been significant research on Au-NPs and their biomedical applications. Functionalized Au-NPs represent highly attractive and promising candidates for drug delivery, owing to their unique dimensions, tunable surface functionalities, and controllable drug release. Further, iron oxide NPs due to their "superparamagnetic" properties have been studied and have demonstrated successful employment in numerous applications. In targeted drug delivery systems, drug-loaded iron oxide NPs can accumulate at the tumor site with the aid of an external magnetic field. This can lead to incremental effectiveness in drug release to the tumor site and vanquish cancer cells without harming healthy cells. In order for the application of iron oxide NPs in the human body to be realized, they should be biodegradable and biocompatible to minimize toxicity. This review illustrates recent advances in the field drug and small molecule delivery such as fluorouracil, folic acid, doxorubicin, paclitaxel, and daunorubicin, specifically when using gold and iron oxide NPs as carriers of anticancer therapeutic agents.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  2. Renninger M, Fahmy O, Schubert T, Schmid MA, Hassan F, Stenzl A, et al.
    World J Urol, 2020 Feb;38(2):397-406.
    PMID: 31030231 DOI: 10.1007/s00345-019-02780-0
    PURPOSE: To investigate whether hexaminolevulinate-based (HAL) bladder tumor resection (TURBT) impacts on outcomes of patients with primary non-muscle-invasive bladder cancer (NMIBC) who were eventually treated with radical cystectomy (RC).

    METHODS: A total of 131 consecutive patients exhibiting NMIBC at primary diagnosis were retrospectively investigated whether they had undergone any HAL-guided TURBT prior to RC. Uni- and multivariable analyses were used to evaluate the impact of HAL-TURBT on cancer-specific (CSS) and overall survival (OS). The median follow-up was 38 months (IQR 13-56).

    RESULTS: Of the 131 patients, 69 (52.7%) were managed with HAL- and 62 (47.3%) with white light (WL)-TURBT only prior to RC. HAL-TURBT was associated with a higher number of TURBTs prior to RC (p = 0.002) and administration of intravesical chemotherapy (p = 0.043). A trend towards a higher rate of tumor-associated immune cell infiltrates in RC specimens (p = 0.07) and a lower utilization rate of post-operative systemic chemotherapy (p = 0.10) was noted for patients who were treated with HAL-TURBT. The 5-year CSS/OS was 90.9%/74.5% for the HAL-group and 73.8%/55.8% for the WL-group (p = 0.042/0.038). In multivariable analysis, lymph node tumor involvement (p = 0.007), positive surgical margins (p = 0.001) and performance of WL-TURBT only (p = 0.040) were independent predictors for cancer-specific death.

    CONCLUSIONS: The present data suggest that the resection of NMIBC under HAL exerts a beneficial impact on outcomes of patients who will need to undergo RC during their course of disease. This finding may be due to improved risk stratification as the resection under HAL may allow more patients to be treated timely and adequately.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  3. Shindi O, Kanesan J, Kendall G, Ramanathan A
    Comput Methods Programs Biomed, 2020 Jun;189:105327.
    PMID: 31978808 DOI: 10.1016/j.cmpb.2020.105327
    BACKGROUND AND OBJECTIVES: In cancer therapy optimization, an optimal amount of drug is determined to not only reduce the tumor size but also to maintain the level of chemo toxicity in the patient's body. The increase in the number of objectives and constraints further burdens the optimization problem. The objective of the present work is to solve a Constrained Multi- Objective Optimization Problem (CMOOP) of the Cancer-Chemotherapy. This optimization results in optimal drug schedule through the minimization of the tumor size and the drug concentration by ensuring the patient's health level during dosing within an acceptable level.

    METHODS: This paper presents two hybrid methodologies that combines optimal control theory with multi-objective swarm and evolutionary algorithms and compares the performance of these methodologies with multi-objective swarm intelligence algorithms such as MOEAD, MODE, MOPSO and M-MOPSO. The hybrid and conventional methodologies are compared by addressing CMOOP.

    RESULTS: The minimized tumor and drug concentration results obtained by the hybrid methodologies demonstrate that they are not only superior to pure swarm intelligence or evolutionary algorithm methodologies but also consumes far less computational time. Further, Second Order Sufficient Condition (SSC) is also used to verify and validate the optimality condition of the constrained multi-objective problem.

    CONCLUSION: The proposed methodologies reduce chemo-medicine administration while maintaining effective tumor killing. This will be helpful for oncologist to discover and find the optimum dose schedule of the chemotherapy that reduces the tumor cells while maintaining the patients' health at a safe level.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  4. Lee DW, Kang IH, Ismail F
    Med J Malaysia, 2020 07;75(4):338-341.
    PMID: 32723991
    OBJECTIVE: Three-weekly docetaxel causes a high rate of febrile neutropenia, especially in the Asian population. Two-weekly docetaxel has been shown to reduce rate of febrile neutropenia in castrate-resistant prostate cancer patients. We conducted a preliminary study to investigate the safety of two-weekly docetaxel in advanced breast cancer patients.

    METHODS: We recruited 10 patients with advanced breast cancer with ECOG (Eastern Cooperative Oncology Group) performance status score of zero to two, who needed chemotherapy in the first or second-line setting to receive two-weekly docetaxel for 8 cycles. The primary endpoint was safety and secondary endpoints were response rate and progression free survival.

    RESULTS: The most reported adverse events were haematological (anaemia 100% and neutropenia 90%). The febrile neutropenia rate was 10%. The overall response rate was 20%. The median progression free survival was 5.0 months.

    CONCLUSION: Two-weekly docetaxel may be a reasonable alternative treatment regimen for patients with advanced breast cancer in the first or second-line setting. This regimen is yet to be compared with standard 3-weekly schedule in a phase 3 randomised clinical trial.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  5. Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, et al.
    Int J Pharm, 2020 Jul 30;585:119556.
    PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556
    In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  6. Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH
    Toxicol In Vitro, 2020 Sep;67:104910.
    PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910
    Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  7. Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Rajak H
    Future Oncol, 2020 Oct;16(30):2457-2469.
    PMID: 32815411 DOI: 10.2217/fon-2020-0385
    HDAC inhibitors (HDACi) play an essential role in various cellular processes, such as differentiation and transcriptional regulation of key genes and cytostatic factors, cell cycle arrest and apoptosis that facilitates the targeting of epigenome of eukaryotic cells. In the majority of cancers, only a handful of patients receive optimal benefit from chemotherapeutics. Additionally, there is emerging interest in the use of HDACi to modulate the effects of ionizing radiations. The use of HDACi with radiotherapy, with the goal of reaching dissimilar, often distinct pathways or multiple biological targets, with the expectation of synergistic effects, reduced toxicity and diminished intrinsic and acquired resistance, conveys an approach of increasing interest. In this review, the clinical potential of HDACi in combination with radiotherapy is described as an efficient synergy for cancer treatment will be overviewed.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  8. Gan BK, Rullah K, Yong CY, Ho KL, Omar AR, Alitheen NB, et al.
    Sci Rep, 2020 Oct 08;10(1):16867.
    PMID: 33033330 DOI: 10.1038/s41598-020-73967-4
    Chemotherapy is widely used in cancer treatments. However, non-specific distribution of chemotherapeutic agents to healthy tissues and normal cells in the human body always leads to adverse side effects and disappointing therapeutic outcomes. Therefore, the main aim of this study was to develop a targeted drug delivery system based on the hepatitis B virus-like nanoparticle (VLNP) for specific delivery of 5-fluorouracil-1-acetic acid (5-FA) to cancer cells expressing epithelial growth factor receptor (EGFR). 5-FA was synthesized from 5-fluorouracil (5-FU), and it was found to be less toxic than the latter in cancer cells expressing different levels of EGFR. The cytotoxicity of 5-FA increased significantly after being conjugated on the VLNP. A cell penetrating peptide (CPP) of EGFR was displayed on the VLNP via the nanoglue concept, for targeted delivery of 5-FA to A431, HT29 and HeLa cells. The results showed that the VLNP displaying the CPP and harboring 5-FA internalized the cancer cells and killed them in an EGFR-dependent manner. This study demonstrated that the VLNP can be used to deliver chemically modified 5-FU derivatives to cancer cells overexpressing EGFR, expanding the applications of the VLNP in targeted delivery of chemotherapeutic agents to cancer cells overexpressing this transmembrane receptor.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  9. Barkat HA, Das SS, Barkat MA, Beg S, Hadi HA
    Future Oncol, 2020 Dec;16(35):2959-2979.
    PMID: 32805124 DOI: 10.2217/fon-2020-0198
    Cancer is one of the leading causes of death worldwide. Regardless of advances in understanding the molecular mechanics of cancer, its treatment is still lacking and the death rates for many forms of the disease remain the same as six decades ago. Although a variety of therapeutic agents and strategies have been reported, these therapies often failed to provide efficient therapy to patients as a consequence of the inability to deliver right and adequate chemotherapeutic agents to the right place. However, the situation has started to revolutionize substantially with the advent of novel 'targeted' nanocarrier-based cancer therapies. Such therapies hold great potential in cancer management as they are biocompatible, tailored to specific needs, tolerated and deliver enough drugs at the targeted site. Their use also enhances the delivery of chemotherapeutics by improving biodistribution, lowering toxicity, inhibiting degradation and increasing cellular uptake. However, in some instances, nonselective targeting is not enough and the inclusion of a ligand moiety is required to achieve tumor targeting and enhanced drug accumulation at the tumor site. This contemporary review outlines the targeting potential of nanocarriers, highlighting the essentiality of nanoparticles, tumor-associated molecular signaling pathways, and various biological and pathophysiological barriers.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  10. Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B, et al.
    Drug Discov Today, 2020 12;25(12):2227-2244.
    PMID: 33011342 DOI: 10.1016/j.drudis.2020.09.031
    A tumor serves as a major avenue in drug development owing to its complexity. Conventional therapies against tumors possess limitations such as suboptimal therapeutic efficacy and extreme side effects. These display poor pharmacokinetics and lack specific targeting, with non-specific distribution resulting in systemic toxicity. Therefore, nanocarriers targeted against cancers are increasingly being explored. Nanomedicine aids in maintaining a balance between efficacy and toxicity by specifically accumulating in tumors. Nanotherapeutics possess advantages such as increased solubility of chemotherapeutics, encapsulation of multiple drugs and improved biodistribution, and can ensure tumor-directed drug delivery and release via the approaches of passive targeting and active targeting. This review aims to offer a general overview of the current advances in tumor-targeting nanocarriers for clinical and diagnostic use.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  11. Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ
    Sci Rep, 2020 12 10;10(1):21704.
    PMID: 33303818 DOI: 10.1038/s41598-020-78601-x
    Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  12. Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ
    Int J Nanomedicine, 2020;15:1437-1456.
    PMID: 32184597 DOI: 10.2147/IJN.S236927
    The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  13. Hama M, Ishima Y, Chuang VTG, Ando H, Shimizu T, Ishida T
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19736-19744.
    PMID: 33881292 DOI: 10.1021/acsami.1c03065
    Abraxane, an albumin-bound paclitaxel nanoparticle formulation, is superior to conventional paclitaxel preparations because it has better efficacy against unresectable pancreatic cancer. Previous reports suggest that this better efficacy of Abraxane than conventional paclitaxel preparation is probably due to its transport through Gp60, an albumin receptor on the surface of vascular endothelial cells. The increased tumor accumulation of Abraxane is also caused by the secreted protein acid and rich in cysteine in the tumor stroma. However, the uptake mechanism of Abraxane remains poorly understood. In this study, we demonstrated that the delivery of Abraxane occurred via different receptor pathways from that of endogenous albumin. Our results showed that the uptake of endogenous albumin was inhibited by a Gp60 pathway inhibitor in the process of endocytosis through endothelial cells or tumor cells. In contrast, the uptake of Abraxane-derived HSA was less affected by the Gp60 pathway inhibitor but significantly reduced by denatured albumin receptor inhibitors. In conclusion, these data indicate that Abraxane-derived HSA was taken up into endothelial cells or tumor cells by a mechanism different from normal endogenous albumin. These new data on distinct cellular transport pathways of denatured albumin via gp family proteins different from those of innate albumin shed light on the mechanisms of tumor delivery and antitumor activity of Abraxane and provide new scientific rationale for the development of a novel albumin drug delivery strategy via a denatured albumin receptor.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  14. Dinh TN, Parat MO, Ong YS, Khaw KY
    Pharmacol Res, 2021 07;169:105666.
    PMID: 33989764 DOI: 10.1016/j.phrs.2021.105666
    Benzyl isothiocyanate (BITC) is one of the common isothiocyanates found in cruciferous vegetables such as broccoli, cabbage or watercress. Preclinical studies report of its effectiveness in the prevention and treatment against several cancers. This review aims to report and discuss findings on anticancer activities of BITC and its modes of action against 14 types of cancer. A literature search was conducted using the keywords "BITC" and "anticancer" from PubMed, Google Scholar and CINAHL Plus to obtain relevant research articles. This review highlights the anticancer efficacy of BITC through modulation of various signaling pathways involved in apoptosis, cell proliferation, cell cycle arrest, metastasis, angiogenesis, autophagy and the effects of BITC in combination with other drugs. With the available pharmacology evidence, we conclude that further studies are needed to validate its effectiveness in humans for further development and translation into prophylaxis or therapy by promoting optimal therapeutic effects and minimizing toxicity in cancer treatment.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  15. Al-Ziftawi NH, Shafie AA, Mohamed Ibrahim MI
    Expert Rev Pharmacoecon Outcomes Res, 2021 Aug;21(4):655-666.
    PMID: 32657174 DOI: 10.1080/14737167.2020.1794826
    BACKGROUND: Pharmacoeconomic evaluation is important for breast-cancer medications due to their high costs. To our knowledge, no systematic literature reviews of pharmacoeconomic studies for breast-cancer medication use are present in developing-countries.

    OBJECTIVES: To systematically review the existing cost-effectiveness evaluations of breast-cancer medication in developing-countries.

    METHODOLOGY: A systematic literature search was performed in PubMed, EMBASE, SCOPUS, and EconLit. Two researchers determined the final articles, extracted data, and evaluated their quality using the Quality of Health-Economic Studies (QHES) tool. The interclass-correlation-coefficient (ICC) was calculated to assess interrater-reliability. Data were summarized descriptively.

    RESULTS: Fourteen pharmacoeconomic studies published from 2009 to 2019 were included. Thirteen used patient-life-years as their effectiveness unit, of which 10 used quality-adjusted life-years. Most of the evaluations focused on trastuzumab as a single agent or on regimens containing trastuzumab (n = 10). The conclusion of cost-effectiveness analysis varied among the studies. All the studies were of high quality (QHES score >75). Interrater reliability between the two reviewers was high (ICC = 0.76).

    CONCLUSION: In many studies included in the review, the use of breast-cancer drugs in developing countries was not cost-effective. Yet, more pharmacoeconomic evaluations for the use of recently approved agents in different disease stages are needed in developing countries.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  16. Domnic G, Jeng-Yeou Chear N, Abdul Rahman SF, Ramanathan S, Lo KW, Singh D, et al.
    J Ethnopharmacol, 2021 Oct 28;279:114391.
    PMID: 34224811 DOI: 10.1016/j.jep.2021.114391
    ETHNOPHARMACOLOGICAL RELEVANCE: Mitragyna speciosa (Korth.) or kratom is a medicinal plant indigenous to Southeast Asia. The leaf of M. speciosa is used as a remedy in pain management including cancer related pain, in a similar way as opioids and cannabis. Despite its well-known analgesic effect, there is a scarce of information on the cancer-suppressing potential of M. speciosa and its active constituents.

    AIM OF THE STUDY: To assess the potential applicability of M. speciosa alkaloids (mitragynine, speciociliatine or paynantheine) as chemosensitizers for cisplatin in Nasopharyngeal carcinoma (NPC) cell lines.

    MATERIALS AND METHODS: The cytotoxic effects of the extracts, fractions and compounds were determined by conducting in vitro cytotoxicity assays. Based on the cytotoxic screening, the alkaloid extract of M. speciosa exhibited potent inhibitory effect on the NPC cell line NPC/HK1, and therefore, was chosen for further fractionation and purification. NPC cell lines NPC/HK1 and C666-1 were treated with combinations of cisplatin and M. speciosa alkaloids combinations in 2D monolayer culture. The effect of cisplatin and mitragynine as a combination on cell migration was tested using in vitro wound healing and spheroid invasion assays.

    RESULTS: In our bioassay guided isolation, both methanolic and alkaloid extracts showed mild to moderate cytotoxic effect against the NPC/HK1 cell line. Both NPC cell lines (NPC/HK1 and C666-1) were insensitive to single agent and combination treatments of the M. speciosa alkaloids. However, mitragynine and speciociliatine sensitized the NPC/HK1 and C666-1 cells to cisplatin at ~4- and >5-fold, respectively in 2D monolayer culture. The combination of mitragynine and cisplatin also significantly inhibited cell migration of the NPC cell lines. Similarly, the combination also of mitragynine and cisplatin inhibited growth and invasion of NPC/HK1 spheroids in a dose-dependent manner. In addition, the spheroids did not rapidly develop resistance to the drug combinations at higher concentrations over 10 days.

    CONCLUSION: Our data indicate that both mitragynine and speciociliatine could be potential chemosensitizers for cisplatin. Further elucidation focusing on the drug mechanistic studies and in vivo studies are necessary to support delineate the therapeutic applicability of M. speciosa alkaloids for NPC treatment.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  17. Chiu HI, Lim V
    Int J Nanomedicine, 2021;16:2995-3020.
    PMID: 33911862 DOI: 10.2147/IJN.S302238
    PURPOSE: In chemotherapy, oral administration of drug is limited due to lack of drug specificity for localized colon cancer cells. The inability of drugs to differentiate cancer cells from normal cells induces side effects. Colonic targeting with polymeric nanoparticulate drug delivery offers high potential strategies for delivering hydrophobic drugs and fewer side effects to the target site. Disulfide cross-linked polymers have recently acquired high significance due to their potential to degrade in reducing colon conditions while resisting the upper gastrointestinal tract's hostile environment. The goal of this project is, therefore, to develop pH-sensitive and redox-responsive fluorescein-labeled wheat germ agglutinin (fWGA)-mounted disulfide cross-linked alginate nanoparticles (fDTP2) directly targeting docetaxel (DTX) in colon cancer cells.

    METHODS: fDTP2 was prepared by mounting fWGA on DTX-loaded nanoparticles (DTP2) using the two-step carbodiimide method. Morphology of fDTP2 was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) study was carried out to determine the mean diameter, polydispersity index (PDI) and zeta potential of fDTP2. Cellular uptake efficiency was examined using fluorescence microplate reader. Biocompatibility and active internalization of fDTP2 were conducted on HT-29.

    RESULTS: fDTP2 was found to exhibit a DTX loading efficiency of 19.3%. SEM and TEM tests revealed spherical nanoparticles. The in vitro DTX release test showed a cumulative release of 54.7%. From the DLS study, fDTP2 reported a 277.7 nm mean diameter with PDI below 0.35 and -1.0 mV zeta potential. HT-29 which was fDTP2-treated demonstrated lower viability than L929 with a half maximal inhibitory concentration (IC50) of 34.7 µg/mL. HT-29 (33.4%) internalized fDTP2 efficiently at 2 h incubation. The study on HT-29 active internalization of nanoparticles through fluorescence and confocal imaging indicated such.

    CONCLUSION: In short, fDTP2 demonstrated promise as a colonic drug delivery DTX transporter.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links