Displaying publications 81 - 100 of 132 in total

Abstract:
Sort:
  1. Muhamad M, Kee LY, Rahman NA, Yusof R
    Int J Biol Sci, 2010 May 23;6(3):294-302.
    PMID: 20567498
    Dengue viruses, mosquito-borne members of the Flaviviridae family, are the causative agents of dengue fever and its associated complications, dengue haemorrhagic fever and dengue shock syndrome. To date, more than 2.5 billion people in over 100 countries are at risk of infection, and approximately 20 million infections were reported annually. There is currently no treatment or vaccine available for dengue infection. This study employed a whole-cell organism model or in vitro methods to study the inhibitory property of the flavanoid-derived compounds against DENV2 activity. Results showed that at concentration not exceeding the maximum non-toxic dose (MNTD), these compounds completely prevented DENV2 infection in HepG2 cells as indicated by the absence of cytophatic effects. The in vitro antiviral activity assessed in HepG2 cells employing virus inhibition assay showed high inhibitory activity in a dose dependent manner. At concentration below MNTD, compounds exhibited inhibitory activity against DENV2 with a range of potency strengths of 72% to 100%. The plaque forming unit per ml (pfu/ml) was reduced prominently with a maximum reduction of 98% when the infected HepG2 cells were treated with the highest non-toxic dose of compounds. The highly potent activity of the compounds against DENV2 infection strongly suggests their potential as a lead antiviral agent for dengue.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  2. Kow CS, Ramachandram DS, Hasan SS
    Int Immunopharmacol, 2022 Feb;103:108455.
    PMID: 34959188 DOI: 10.1016/j.intimp.2021.108455
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  3. Alamri RD, Elmeligy MA, Albalawi GA, Alquayr SM, Alsubhi SS, El-Ghaiesh SH
    Int Immunopharmacol, 2021 Apr;93:107398.
    PMID: 33571819 DOI: 10.1016/j.intimp.2021.107398
    Leflunomide (LF) represents the prototype member of dihydroorotate dehydrogenase (DHODH) enzyme inhibitors. DHODH is a mitochondrial inner membrane enzyme responsible for catalytic conversion of dihydroorotate into orotate, a rate-limiting step in the de novo synthesis of the pyrimidine nucleotides. LF produces cellular depletion of pyrimidine nucleotides required for cell growth and proliferation. Based on the affected cells the outcome can be attainable as immunosuppression, antiproliferative, and/or the recently gained attention of the antiviral potentials of LF and its new congeners. Also, protein tyrosine kinase inhibition is an additional mechanistic benefit of LF, which inhibits immunological events such as cellular expansion and immunoglobulin production with an enhanced release of immunosuppressant cytokines. LF is approved for the treatment of autoimmune arthritis of rheumatoid and psoriatic pathogenesis. Also, LF has been used off-label for the treatment of relapsing-remitting multiple sclerosis. However, LF antiviral activity is repurposed and under investigation with related compounds under a phase-I trial as a SARS CoV-2 antiviral in cases with COVID-19. Despite success in improving patients' mobility and reducing joint destruction, reported events of LF-induced liver injury necessitated regulatory precautions. LF should not be used in patients with hepatic impairment or in combination with drugs elaborating a burden on the liver without regular monitoring of liver enzymes and serum bilirubin as safety biomarkers. This study aims to review the pharmacological and safety profile of LF with a focus on the LF-induced hepatic injury from the perspective of pathophysiology and possible protective agents.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  4. Kow CS, Hasan SS
    Int Immunopharmacol, 2021 Apr;93:107415.
    PMID: 33540249 DOI: 10.1016/j.intimp.2021.107415
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  5. Asif M, Saleem M, Saadullah M, Yaseen HS, Al Zarzour R
    Inflammopharmacology, 2020 Oct;28(5):1153-1161.
    PMID: 32803479 DOI: 10.1007/s10787-020-00744-0
    Coronavirus disease of 2019 (COVID-19) has emerged as a global health threat. Unfortunately, there are very limited approved drugs available with established efficacy against the SARs-CoV-2 virus and its inflammatory complications. Vaccine development is actively being researched, but it may take over a year to become available to general public. Certain medications, for example, dexamethasone, antimalarials (chloroquine/hydroxychloroquine), antiviral (remdesivir), and IL-6 receptor blocking monoclonal antibodies (tocilizumab), are used in various combinations as off-label medications to treat COVID-19. Essential oils (EOs) have long been known to have anti-inflammatory, immunomodulatory, bronchodilatory, and antiviral properties and are being proposed to have activity against SARC-CoV-2 virus. Owing to their lipophilic nature, EOs are advocated to penetrate viral membranes easily leading to membrane disruption. Moreover, EOs contain multiple active phytochemicals that can act synergistically on multiple stages of viral replication and also induce positive effects on host respiratory system including bronchodilation and mucus lysis. At present, only computer-aided docking and few in vitro studies are available which show anti-SARC-CoV-2 activities of EOs. In this review, role of EOs in the prevention and treatment of COVID-19 is discussed. A discussion on possible side effects associated with EOs as well as anti-corona virus claims made by EOs manufacturers are also highlighted. Based on the current knowledge a chemo-herbal (EOs) combination of the drugs could be a more feasible and effective approach to combat this viral pandemic.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  6. Saleemi MA, Ahmad B, Benchoula K, Vohra MS, Mea HJ, Chong PP, et al.
    Infect Genet Evol, 2020 11;85:104583.
    PMID: 33035643 DOI: 10.1016/j.meegid.2020.104583
    The emergence of a new coronavirus, in around late December 2019 which had first been reported in Wuhan, China has now developed into a massive threat to global public health. The World Health Organization (WHO) has named the disease caused by the virus as COVID-19 and the virus which is the culprit was renamed from the initial novel respiratory 2019 coronavirus to SARS-CoV-2. The person-to-person transmission of this virus is ongoing despite drastic public health mitigation measures such as social distancing and movement restrictions implemented in most countries. Understanding the source of such an infectious pathogen is crucial to develop a means of avoiding transmission and further to develop therapeutic drugs and vaccines. To identify the etiological source of a novel human pathogen is a dynamic process that needs comprehensive and extensive scientific validations, such as observed in the Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and human immunodeficiency virus (HIV) cases. In this context, this review is devoted to understanding the taxonomic characteristics of SARS-CoV-2 and HIV. Herein, we discuss the emergence and molecular mechanisms of both viral infections. Nevertheless, no vaccine or therapeutic drug is yet to be approved for the treatment of SARS-CoV-2, although it is highly likely that new effective medications that target the virus specifically will take years to establish. Therefore, this review reflects the latest repurpose of existing antiviral therapeutic drug choices available to combat SARS-CoV-2.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  7. Ayipo YO, Yahaya SN, Alananzeh WA, Babamale HF, Mordi MN
    Infect Genet Evol, 2021 Sep;93:104944.
    PMID: 34052418 DOI: 10.1016/j.meegid.2021.104944
    Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-β and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  8. Kow CS, Ramachandram DS, Hasan SS
    Immunopharmacol Immunotoxicol, 2022 Feb;44(1):28-34.
    PMID: 34762561 DOI: 10.1080/08923973.2021.1993894
    AIM: Several randomized trials have evaluated the effect of neutralizing monoclonal antibodies on the risk of hospital admission and risk of mortality in patients with COVID-19. We aimed to summarize the overall evidence in the form of a systematic review and meta-analysis.

    METHODS: A systematic literature search with no language restriction was performed in electronic databases and preprint repositories to identify eligible studies published up to 29 June 2021. The outcomes of interest were hospital admission and all-cause mortality. A random-effects model was used to estimate the pooled odds ratio (OR) for outcomes of interest with the use of neutralizing monoclonal antibodies relative to nonuse of neutralizing monoclonal antibodies, at 95% confidence intervals (CI).

    RESULTS: Our systematic literature search identified nine randomized controlled trials. Three trials had an overall low risk of bias, while four trials had some concerns in the overall risk of bias. The meta-analysis revealed no statistically significant difference in the odds of mortality (pooled OR = 0.69; 95% CI 0.33-1.47), but a statistically significant reduction in the odds of hospital admission (pooled OR = 0.29; 95% CI 0.21-0.42), with the administration of a neutralizing monoclonal antibody among patients with COVID-19, relative to non-administration of a neutralizing monoclonal antibody, at the current sample size.

    CONCLUSION: The reduced risk of hospital admission with neutralizing monoclonal antibodies use suggests that the timing of neutralizing antibodies administration is key in preventing hospital admission and, ultimately, death. Future randomized trials should aim to determine if the clinical outcomes with neutralizing monoclonal antibodies differ based on serostatus.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  9. Sarin SK, Kumar M, Lau GK, Abbas Z, Chan HL, Chen CJ, et al.
    Hepatol Int, 2016 Jan;10(1):1-98.
    PMID: 26563120 DOI: 10.1007/s12072-015-9675-4
    Worldwide, some 240 million people have chronic hepatitis B virus (HBV), with the highest rates of infection in Africa and Asia. Our understanding of the natural history of HBV infection and the potential for therapy of the resultant disease is continuously improving. New data have become available since the previous APASL guidelines for management of HBV infection were published in 2012. The objective of this manuscript is to update the recommendations for the optimal management of chronic HBV infection. The 2015 guidelines were developed by a panel of Asian experts chosen by the APASL. The clinical practice guidelines are based on evidence from existing publications or, if evidence was unavailable, on the experts' personal experience and opinion after deliberations. Manuscripts and abstracts of important meetings published through January 2015 have been evaluated. This guideline covers the full spectrum of care of patients infected with hepatitis B, including new terminology, natural history, screening, vaccination, counseling, diagnosis, assessment of the stage of liver disease, the indications, timing, choice and duration of single or combination of antiviral drugs, screening for HCC, management in special situations like childhood, pregnancy, coinfections, renal impairment and pre- and post-liver transplant, and policy guidelines. However, areas of uncertainty still exist, and clinicians, patients, and public health authorities must therefore continue to make choices on the basis of the evolving evidence. The final clinical practice guidelines and recommendations are presented here, along with the relevant background information.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  10. Howell J, Seaman C, Wallace J, Xiao Y, Scott N, Davies J, et al.
    Hepatology, 2023 Sep 01;78(3):976-990.
    PMID: 37125643 DOI: 10.1097/HEP.0000000000000430
    Hepatitis B (HBV) is a major cause of global morbidity and mortality, and the leading cause of liver cancer worldwide. Significant advances have recently been made toward the development of a finite HBV treatment that achieves permanent loss of HBsAg and HBV DNA (so-called "HBV cure"), which could provide the means to eliminate HBV as a public health threat. However, the HBV cure is just one step toward achieving WHO HBV elimination targets by 2030, and much work must be done now to prepare for the successful implementation of the HBV cure. In this review, we describe the required steps to rapidly scale-up future HBV cure equitably. We present key actions required for successful HBV cure implementation, integrated within the World Health Organization (WHO) Global Health Sector Strategy (GHSS) 2022-2030 framework. Finally, we highlight what can be done now to progress toward the 2030 HBV elimination targets using available tools to ensure that we are preparing, but not waiting, for the cure.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  11. Hassan MRA, Chan HK, Nordin M, Yahya R, Sulaiman WRW, Merican SAA, et al.
    Harm Reduct J, 2023 Apr 12;20(1):48.
    PMID: 37046294 DOI: 10.1186/s12954-023-00780-3
    BACKGROUND: Despite advancements in hepatitis C virus (HCV) treatment, low uptake among hard-to-reach populations remains a global issue. The current study aimed to assess the feasibility of a modified same-day test-and-treat model in improving HCV care for people who inject drugs (PWID) living in resource-constrained rural areas.

    METHODS: A pilot study was conducted in four primary healthcare (PHC) centers in Malaysia. The model's key features included on-site HCV ribonucleic acid (RNA) testing using a shared GeneXpert® system; noninvasive biomarkers for cirrhosis diagnosis; and extended care to PWID referred from nearby PHC centers and outreach programs. The feasibility assessment focused on three aspects of the model: demand (i.e., uptake of HCV RNA testing and treatment), implementation (i.e., achievement of each step in the HCV care cascade), and practicality (i.e., ability to identify PWID with HCV and expedite treatment initiation despite resource constraints).

    RESULTS: A total of 199 anti-HCV-positive PWID were recruited. They demonstrated high demand for HCV care, with a 100% uptake of HCV RNA testing and 97.4% uptake of direct-acting antiviral treatment. The rates of HCV RNA positivity (78.4%) and sustained virologic response (92.2%) were comparable to standard practice, indicating the successful implementation of the model. The model was also practical, as it covered non-opioid-substitution-therapy-receiving individuals and enabled same-day treatment in 71.1% of the participants.

    CONCLUSIONS: The modified same-day test-and-treat model is feasible in improving HCV care for rural PWID. The study finding suggests its potential for wider adoption in HCV care for hard-to-reach populations.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  12. Asif M, Saleem M, Yaseen HS, Yehya AH, Saadullah M, Zubair HM, et al.
    Future Microbiol, 2021 Nov;16(16):1289-1301.
    PMID: 34689597 DOI: 10.2217/fmb-2021-0024
    COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  13. Azzeri A, Dahlui M, Mohamed R, McDonald SA, Jaafar H, Shabaruddin FH
    Front Public Health, 2023;11:1114560.
    PMID: 36935675 DOI: 10.3389/fpubh.2023.1114560
    INTRODUCTION: A scaled-up treatment cascade with direct-acting antiviral (DAA) therapy is necessary to achieve global WHO targets for hepatitis C virus (HCV) elimination in Malaysia. Recently, limited access to sofosbuvir/daclatasvir (SOF/DAC) is available through compulsory licensing, with access to sofosbuvir/velpatasvir (SOF/VEL) expected through voluntary licensing due to recent agreements. SOF/VEL has superior clinical outcomes but has higher drug acquisition costs compared to SOF/DAC. A stratified treatment cascade might be the most cost-efficient approach for Malaysia whereby all HCV patients are treated with SOF/DAC except for patients with cirrhosis who are treated with SOF/VEL.

    METHODS: This study aimed to conduct a 5-year budget impact analysis of the proposed stratified treatment cascade for HCV treatment in Malaysia. A disease progression model that was developed based on model-predicted HCV epidemiology data was used for the analysis, where all HCV patients in scenario A were treated with SOF/DAC for all disease stages while in scenario B, SOF/DAC was used only for non-cirrhotic patients and SOF/VEL was used for the cirrhotic patients. Healthcare costs associated with DAA therapy and disease stage monitoring were included to estimate the downstream cost implications.

    RESULTS: The stratified treatment cascade with 109 in Scenario B was found to be cost-saving compared to Scenario A. The cumulative savings for the stratified treatment cascade was USD 1.4 million over 5 years.

    DISCUSSION: A stratified treatment cascade with SOF/VEL was expected to be cost-saving and can result in a budget impact reduction in overall healthcare expenditure in Malaysia.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  14. Kanauchi O, Low ZX, Jounai K, Tsuji R, AbuBakar S
    Front Immunol, 2023;14:1280680.
    PMID: 38116008 DOI: 10.3389/fimmu.2023.1280680
    The COVID-19 outbreak has caused significant global changes and increased public awareness of SARS-CoV-2. Substantial progress in developing vaccines, enhancing sanitation practices, and implementing various measures to combat the virus, including the utilization of probiotics has been made. This comprehensive review examined the medical impact of clinically proven probiotics on infectious diseases, considering three crucial time periods: before (pre-), during (mid-), and after (post-) COVID-19 pandemic era. This review also showed a perspective on the use of probiotics to stimulate the innate immune system and prevent infectious diseases. In pre-COVID-19 era, several probiotic strains were found to be clinically effective in addressing gastrointestinal infectious diseases, the common cold and flu. However, the mechanism by which probiotics exerted their antiviral effects remained relatively unclear during that period. Nevertheless, probiotics, Lactococcus lactis strain Plasma (LC-Plasma), and others have gained attention for their unique ability to modulate the immune system and demonstrate antiviral properties. While some probiotics have shown promise in alleviating gastrointestinal symptoms linked to COVID-19, their direct effectiveness in treating or preventing COVID-19 progression has not yet been conclusively established. As we transition into the post-COVID-19 era, the relationship between COVID-19 and plasmacytoid dendritic cells (pDCs), a vital component of the innate immune system, has been gradually elucidated. These findings are now being applied in developing novel vaccines and treatments involving interferons and in immune activation research using probiotics as adjuvants, comparable to CpG-DNA through TLR9. The role of the local innate immune system, including pDCs, as the first line of defense against viral infections has gained increasing interest. Moving forward, insight of the immune system and the crosstalk between probiotics and the innate immune system is expected to highlight the role of probiotics in adjunctive immunoregulatory therapy. In combination with drug treatments, probiotics may play a more substantial role in enhancing immune responses. The immunoregulatory approach using probiotics such as LC-Plasma, which can induce anti-infectious factors such as interferons, holds promise as a viable therapeutic and prophylactic option against viral infectious diseases due to their good safety profile and protective efficacy.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  15. Norshidah H, Leow CH, Ezleen KE, Wahab HA, Vignesh R, Rasul A, et al.
    Front Cell Infect Microbiol, 2023;13:1061937.
    PMID: 36864886 DOI: 10.3389/fcimb.2023.1061937
    An increase in the occurrence of viral infectious diseases is a global concern for human health. According to a WHO report, dengue virus (DENV) is one of the most common viral diseases affecting approximately 400 million people annually, with worsening symptoms in nearly 1% of cases. Both academic and industrial researchers have conducted numerous studies on viral epidemiology, virus structure and function, source and route of infection, treatment targets, vaccines, and drugs. The development of CYD-TDV or Dengvaxia® vaccine has been a major milestone in dengue treatment. However, evidence has shown that vaccines have some drawbacks and limitations. Therefore, researchers are developing dengue antivirals to curb infections. DENV NS2B/NS3 protease is a DENV enzyme essential for replication and virus assembly, making it an interesting antiviral target. For faster hit and lead recognition of DENV targets, methods to screen large number of molecules at lower costs are essential. Similarly, an integrated and multidisciplinary approach involving in silico screening and confirmation of biological activity is required. In this review, we discuss recent strategies for searching for novel DENV NS2B/NS3 protease inhibitors from the in silico and in vitro perspectives, either by applying one of the approaches or by integrating both. Therefore, we hope that our review will encourage researchers to integrate the best strategies and encourage further developments in this area.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  16. Aguilar HC, Lee B
    Expert Rev Mol Med, 2011;13:e6.
    PMID: 21345285 DOI: 10.1017/S1462399410001754
    In recent years, several paramyxoviruses have emerged to infect humans, including previously unidentified zoonoses. Hendra and Nipah viruses (henipaviruses within this family) were first identified in the 1990s in Australia, Malaysia and Singapore, causing epidemics with high mortality and morbidity rates in affected animals and humans. Other paramyxoviruses, such as Menangle virus, Tioman virus, human metapneumovirus and avian paramyxovirus 1, which cause less morbidity in humans, have also been recently identified. Although the Paramyxoviridae family of viruses has been previously recognised as biomedically and veterinarily important, the recent emergence of these paramyxoviruses has focused our attention on this family. Antiviral drugs can be designed to target specific important determinants of the viral life cycle. Therefore, identifying and understanding the mechanistic underpinnings of viral entry, replication, assembly and budding will be critical in the development of antiviral therapeutic agents. This review focuses on the molecular mechanisms discovered and the antiviral strategies pursued in recent years for emerging paramyxoviruses, with particular emphasis on viral entry and exit mechanisms.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  17. Neoh CF, Kong DC
    Expert Rev Pharmacoecon Outcomes Res, 2014 Jun;14(3):319-34.
    PMID: 24708054 DOI: 10.1586/14737167.2014.906306
    Hepatitis C virus (HCV) infection is costly to treat and, has high morbidity and mortality. The addition of new protease inhibitors (i.e., boceprevir, telaprevir), to the standard dual therapy with pegylated interferon-α and ribavirin, for the treatment of HCV infection has demonstrated superior efficacy with shorter treatment duration, but at higher drug acquisition costs and incidence of adverse events. Robust economic data are required to inform healthcare decision for the optimal use of these expensive antiviral agents. Accordingly, this review will explore the clinical and economic aspects of boceprevir-based treatment strategies. Important considerations, challenges and gaps for future pharmacoeconomic research in this setting are highlighted.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  18. Charan J, Kaur RJ, Bhardwaj P, Haque M, Sharma P, Misra S, et al.
    Expert Rev Clin Pharmacol, 2021 Jan;14(1):95-103.
    PMID: 33252992 DOI: 10.1080/17512433.2021.1856655
    Objectives: Remdesivir has shown promise in the management of patients with COVID-19 although recent studies have shown concerns with its effectiveness in practice. Despite this there is a need to document potential adverse drug events (ADEs) to guide future decisions as limited ADE data available before the COVID-19 pandemic. Methods: Interrogation of WHO VigiBase® from 2015 to 2020 coupled with published studies of ADEs in COVID-19 patients. The main outcome measures are the extent of ADEs broken down by factors including age, seriousness, region and organ. Results: A total 1086 ADEs were reported from the 439 individual case reports up to July 19, 2020, in the VigiBase®, reduced to 1004 once duplicates were excluded. Almost all ADEs concerned COVID-19 patients (92.5%), with an appreciable number from the Americas (67.7%). The majority of ADEs were from males > 45 years and were serious (82.5%). An increase in hepatic enzymes (32.1%), renal injury (14.4%), rise in creatinine levels (11.2%), and respiratory failure (6.4%) were the most frequently reported ADEs. Conclusions: Deterioration of liver and kidney function are frequently observed ADEs with remdesivir; consequently, patients should be monitored for these ADEs. The findings are in line with ADEs included in regulatory authority documents.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  19. Habas K, Nganwuchu C, Shahzad F, Gopalan R, Haque M, Rahman S, et al.
    Expert Rev Anti Infect Ther, 2020 12;18(12):1201-1211.
    PMID: 32749914 DOI: 10.1080/14787210.2020.1797487
    INTRODUCTION: Coronavirus disease 2019 (COVID-19) was first detected in China in December, 2019, and declared as a pandemic by the World Health Organization (WHO) on March 11, 2020. The current management of COVID-19 is based generally on supportive therapy and treatment to prevent respiratory failure. The effective option of antiviral therapy and vaccination are currently under evaluation and development.

    AREAS COVERED: A literature search was performed using PubMed between December 1, 2019-June 23, 2020. This review highlights the current state of knowledge on the viral replication and pathogenicity, diagnostic and therapeutic strategies, and management of COVID-19. This review will be of interest to scientists and clinicians and make a significant contribution toward development of vaccines and targeted therapies to contain the pandemic.

    EXPERT OPINION: The exit strategy for a path back to normal life is required, which should involve a multi-prong effort toward development of new treatment and a successful vaccine to protect public health worldwide and prevent future COVID-19 outbreaks. Therefore, the bench to bedside translational research as well as reverse translational works focusing bedside to bench is very important and would provide the foundation for the development of targeted drugs and vaccines for COVID-19 infections.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  20. Kow CS, Hasan SS
    Eur J Clin Pharmacol, 2021 Aug;77(8):1089-1094.
    PMID: 33532896 DOI: 10.1007/s00228-021-03087-z
    OBJECTIVE: We aimed to perform a meta-analysis of randomized controlled trials (RCTs) to summarize the overall effect of tocilizumab on the risk of mortality among patients with coronavirus disease 2019 (COVID-19).

    METHODS: We systematically searched PubMed, Cochrane Central Register of Controlled Trials, Google Scholar, and medRxiv (preprint repository) databases (up to 7 January 2021). Pooled effect sizes with 95% confidence interval (CI) were generated using random-effects and inverse variance heterogeneity models. The risk of bias of the included RCTs was appraised using version 2 of the Cochrane risk-of-bias tool for randomized trials.

    RESULTS: Six RCTs were included: two trials with an overall low risk of bias and four trials had some concerns regarding the overall risk of bias. Our meta-analysis did not find significant mortality benefits with the use of tocilizumab among patients with COVID-19 relative to non-use of tocilizumab (pooled hazard ratio = 0.83; 95% CI 0.66-1.05, n = 2,057). Interestingly, the estimated effect of tocilizumab on the composite endpoint of requirement for mechanical ventilation and/or all-cause mortality indicated clinical benefits, with some evidence against our model hypothesis of no significant effect at the current sample size (pooled hazard ratio = 0.62; 95% CI 0.42-0.91, n = 749).

    CONCLUSION: Despite no clear mortality benefits in hospitalized patients with COVID-19, tocilizumab appears to reduce the likelihood of progression to mechanical ventilation.

    Matched MeSH terms: Antiviral Agents/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links