Displaying publications 81 - 100 of 288 in total

Abstract:
Sort:
  1. Poh Yuen Wen A, Halim AS, Mat Saad AZ, Mohd Nor F, Wan Sulaiman WA
    Complement Ther Med, 2018 Dec;41:261-266.
    PMID: 30477850 DOI: 10.1016/j.ctim.2018.10.006
    BACKGROUND: Gamat (sea-cucumber) is a natural occurring fauna which is popularly used as traditional medication in Southeast Asian countries. There have been many animal studies done on its' biochemical properties and its' effects in vivo. The effect of gamat on human cutaneous wounds was studied using a split-skin graft donor site wound.

    METHODS: This was a comparative case-control study done on patients in Hospital Universiti Sains Malaysia (Hospital USM), requiring split-thickness skin grafting, whereby, the skin graft donor site was divided to almost equal halves, and applied with both gamat-based gel on one side, with Duoderm® hydrogel on the other side. The epithelialization of the wounds was observed and compared on days 10, 14 and 21. Pain score, and pruritus score were also observed. Repeated measure analysis of variance (ANOVA) test and Paired t-test was used to test statistical significance accordingly.

    RESULTS: No significant differences were seen in rates of epithelialization of wounds on days 10, 14 and 21 (p > 0.01). No significant difference was also seen in the pain score and pruritus score (p > 0.01).

    CONCLUSIONS: A gamat-based gel is comparable to conventional hydrogels in treatment of split-skin graft donor site. No adverse effects were observed in either group.

    Matched MeSH terms: Biological Products/pharmacology*
  2. Nwaefulu ON, Al-Shar'i NA, Owolabi JO, Sagineedu SR, Woei LC, Wai LK, et al.
    J Mol Model, 2022 Oct 04;28(11):340.
    PMID: 36194315 DOI: 10.1007/s00894-022-05326-1
    Cancer is imposing a global health burden because of the steady increase in new cases. Moreover, current anticancer therapeutics are associated with many drawbacks, mainly the emergence of resistance and the severe adverse effects. Therefore, there is a continuous need for developing new anticancer agents with novel mechanisms of action and lower side effects. Natural products have been a rich source of anticancer medication. Cycleanine, a natural product, was reported to exert an antiproliferative effect on ovarian cancer cells by causing apoptosis through activation of caspases 3/7 and cleavage of poly (ADP-ribose) polymerase to form poly (ADP-ribose) polymerase-1 (PARP1). It is well-established that PARP1 is associated with carcinogenesis, and different PARP1 inhibitors are approved as anticancer drugs. In this study, the cytotoxic activity of cycleanine was computationally investigated to determine whether it is a PARP1 inhibitor or a caspase activator. Molecular docking and molecular dynamics (MD) simulations were utilized for this purpose. The results showed that cycleanine has a good binding affinity to PARP1; moreover, MD simulation showed that it forms a stable complex with the enzyme. Consequently, the results showed that cycleanine is a potential inhibitor of the PARP1 enzyme.
    Matched MeSH terms: Biological Products*
  3. Nyam KL, Chow CF, Tan CS, Ng ST
    Int J Med Mushrooms, 2017;19(7):607-617.
    PMID: 29199582 DOI: 10.1615/IntJMedMushrooms.2017021186
    Diabetes mellitus is a major cause of morbidity and mortality worldwide. Although scientific evidence supporting its therapeutic efficacy is lacking, the use of the tiger's milk mushroom (TGM; Lignosus rhinocerotis), which is native to tropical areas such as Malaysia, Indonesia, and the Philippines, has been found to contain a very large amount of potential antioxidants. In this study, rats were weighed and then intravenously injected with 35 mg/kg streptozotocin (STZ). Rats were left for 1 week before blood glucose concentrations were measured to determine the onset of diabetes before the next procedure was conducted. Rats with blood glucose exceeding 7.0 mmol/L were considered diabetic and were included in the experiment. All groups were fed their respective treatments twice daily for 2 months throughout the experiment. Antidiabetic and antioxidant properties of freeze-dried TGM powder, such as reduced glutathione (GSH), superoxide dismutase (SOD), lipid peroxidation (LPO), and catalase (CAT) activities, were investigated in liver samples. The biological compounds present in the freeze-dried TGM powder was found to exhibit antidiabetic properties by significantly reducing elevated blood glucose concentrations to a normal range (3.0-7.0 mmol/L) in Sprague-Dawley rats with streptozotocin-induced diabetes, and increasing the body weight of the rats. Freeze-dried TGM powder was also found to possess antioxidant activity by significantly increasing GSH, CAT, and SOD activities while reducing LPO (P < 0.05). THis study shows that freeze-dried TGM powder exhibits significant antidiabetic properties and may be a potential supplement in ameliorating diabetic complications.
    Matched MeSH terms: Biological Products/therapeutic use*
  4. Ambati RR, Phang SM, Ravi S, Aswathanarayana RG
    Mar Drugs, 2014 Jan 07;12(1):128-52.
    PMID: 24402174 DOI: 10.3390/md12010128
    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3'-dihydroxy-β, β'-carotene-4,4'-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.
    Matched MeSH terms: Biological Products/chemistry
  5. Erejuwa OO
    J Diabetes Metab Disord, 2014 Jan 29;13(1):23.
    PMID: 24476150 DOI: 10.1186/2251-6581-13-23
    Diabetes mellitus remains an incurable disorder in spite of intense research. As result of limitations and unmet goals associated with the use of anti-diabetic drugs, an increased number of diabetic populations globally now resort to complementary and alternative medicine (CAM) such as herbs and other natural products. There has been a renewed interest in the use of honey in the treatment of diabetes mellitus, partly due to an increase in the availability of evidence-based data demonstrating its benefits in diabetic rodents and patients. This commentary aims to underscore some of the research implications, issues and questions raised from these studies which show the beneficial effects of honey in the treatment of diabetes mellitus. Some of the issues highlighted in this article include: considering honey is sweet and rich in sugars, how could it be beneficial in the management of diabetes mellitus? Are the observed effects of honey or combined with anti-diabetic drugs exclusive to certain honey such as tualang honey? Could these beneficial effects be reproduced with other honey samples? Anti-diabetic drugs in combination with honey improve glycemic control, enhance antioxidant defenses and reduce oxidative damage. These effects are believed to be mediated partly via antioxidant mechanism of honey. This raises another question. Could similar data be obtained if anti-diabetic drugs are co-administered with other potent antioxidants such as vitamin C or E? As the evidence has revealed, the prospect of managing diabetes mellitus with honey or antioxidants (such as vitamin C or E) as an adjunct to conventional diabetes therapy is vast. However, more well-designed, rigorously conducted randomized controlled studies are necessary to further validate these findings.
    Matched MeSH terms: Biological Products
  6. Ahmed F, Ghalib RM, Sasikala P, Ahmed KK
    Pharmacogn Rev, 2013 Jul;7(14):121-30.
    PMID: 24347920 DOI: 10.4103/0973-7847.120511
    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed.
    Matched MeSH terms: Biological Products
  7. Christina A, Christapher V, Bhore SJ
    Pharmacogn Rev, 2013 Jan;7(13):11-6.
    PMID: 23922451 DOI: 10.4103/0973-7847.112833
    World human population is increasing with an alarming rate; and a variety of new types of health issues are popping up. For instance, increase in number of drug-resistant bacteria is a cause of concern. Research on antibiotics and other microbial natural products is pivotal in the global fight against the growing problem of antibiotic resistance. It is necessary to find new antibiotics to tackle this problem. The use of therapeutic plant species in traditional medicine is as old as mankind; and currently, it is strongly believed that all types of plant species across the plant kingdom do harbour endophytic bacteria (EB). The natural therapeutic compounds produced by EB do have several potential applications in pharmaceutical industry. The EB derived natural products such as Ecomycins, Pseudomycins, Munumbicins and Xiamycins are antibacterial, antimycotic and antiplasmodial. Some of these natural products have been reported to possess even antiviral (including Human Immunodeficiency Virus (HIV)) properties. Therefore, to deal with increasing number of drug-resistant pathogens EB could serve as a potential source of novel antibiotics.
    Matched MeSH terms: Biological Products
  8. Phan CW, Wong WL, David P, Naidu M, Sabaratnam V
    PMID: 22812497 DOI: 10.1186/1472-6882-12-102
    Drugs dedicated to alleviate neurodegenerative diseases like Parkinson's and Alzheimer's have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal.
    Matched MeSH terms: Biological Products/pharmacology*; Biological Products/therapeutic use; Biological Products/chemistry
  9. Yap YH, Tan N, Fung S, Aziz AA, Tan C, Ng S
    J Sci Food Agric, 2013 Sep;93(12):2945-52.
    PMID: 23460242 DOI: 10.1002/jsfa.6121
    Lignosus rhinocerus (tiger milk mushroom) is an important medicinal mushroom used in Southeast Asia and China, and its sclerotium can be developed into functional food/nutraceuticals. The nutrient composition, antioxidant properties, and anti-proliferative activity of wild type and a cultivated strain of L. rhinocerus sclerotia were investigated.
    Matched MeSH terms: Biological Products/isolation & purification; Biological Products/pharmacology*; Biological Products/chemistry
  10. Al-Amiery AA, Al-Majedy YK, Kadhum AA, Mohamad AB
    Sci Rep, 2015;5:11825.
    PMID: 26134661 DOI: 10.1038/srep11825
    The rational design of 4-hydroxycoumarins with tailor-made antioxidant activities is required nowadays due to the wide variety of pharmacologically significant, structurally interesting of coumarins and researcher orientation toward green chemistry and natural products. A simple and unique coumarins have been achieved by reaction of 4-hydroxycoumarin with aromatic aldehyde accompanied with the creation of a macromolecules have 2-aminothiazolidin-4-one. The molecular structures of the compounds were characterized by the Fourier transformation infrared and Nuclear magnetic resonance spectroscopies, in addition to CHN analysis. The scavenging abilities of new compounds against stable DPPH radical (DPPH•) and hydrogen peroxide were done and the results show that the compounds exhibited high antioxidant activates.
    Matched MeSH terms: Biological Products
  11. Amelia K, Singh J, Shah FH, Bhore SJ
    Pharmacognosy Res, 2015 Apr-Jun;7(2):209-12.
    PMID: 25829797 DOI: 10.4103/0974-8490.150536
    Common bean (Phaseolus vulgaris L.) is an important part of the human diet and serves as a source of natural products. Identification and understanding of genes in P. vulgaris is important for its improvement. Characterization of expressed sequence tags (ESTs) is one of the approaches in understanding the expressed genes. For the understanding of genes expression in P. vulgaris pod-tissue, research work of ESTs generation was initiated by constructing cDNA libraries using 5-day and 20-day old bean-pod-tissues. Altogether, 5972 cDNA clones were isolated to have ESTs. While processing ESTs, we found a transcript for calmodulin (CaM) gene. It is an important gene that encodes for a calcium-binding protein and known to express in all eukaryotic cells. Hence, this study was undertaken to analyse and annotate it.
    Matched MeSH terms: Biological Products
  12. Ramzi AB, Baharum SN, Bunawan H, Scrutton NS
    Front Bioeng Biotechnol, 2020;8:608918.
    PMID: 33409270 DOI: 10.3389/fbioe.2020.608918
    Increasing demands for the supply of biopharmaceuticals have propelled the advancement of metabolic engineering and synthetic biology strategies for biomanufacturing of bioactive natural products. Using metabolically engineered microbes as the bioproduction hosts, a variety of natural products including terpenes, flavonoids, alkaloids, and cannabinoids have been synthesized through the construction and expression of known and newly found biosynthetic genes primarily from model and non-model plants. The employment of omics technology and machine learning (ML) platforms as high throughput analytical tools has been increasingly leveraged in promoting data-guided optimization of targeted biosynthetic pathways and enhancement of the microbial production capacity, thereby representing a critical debottlenecking approach in improving and streamlining natural products biomanufacturing. To this end, this mini review summarizes recent efforts that utilize omics platforms and ML tools in strain optimization and prototyping and discusses the beneficial uses of omics-enabled discovery of plant biosynthetic genes in the production of complex plant-based natural products by bioengineered microbes.
    Matched MeSH terms: Biological Products
  13. Ku Nurul Aqmar Ku Bahaudin, Ahmad Bazli Ramzi, Syarul Nataqain Baharum, Suriana Sabri, Adam Leow Thean Chor, Tewin Tencomnao
    Sains Malaysiana, 2018;47:3077-3084.
    Flavonoid is an industrially-important compound due to its high pharmaceutical and cosmeceutical values. However,
    conventional methods in extracting and synthesizing flavonoids are costly, laborious and not sustainable due to small
    amount of natural flavonoids, large amounts of chemicals and space used. Biotechnological production of flavonoids
    represents a viable and sustainable route especially through the use of metabolic engineering strategies in microbial
    production hosts. In this review, we will highlight recent strategies for the improving the production of flavonoids
    using synthetic biology approaches in particular the innovative strategies of genetically-encoded biosensors for in
    vivo metabolite analysis and high-throughput screening methods using fluorescence-activated cell sorting (FACS).
    Implementation of transcription factor based-biosensor for microbial flavonoid production and integration of systems
    and synthetic biology approaches for natural product development will also be discussed.
    Matched MeSH terms: Biological Products
  14. Teow SY, Liew K, Ali SA, Khoo AS, Peh SC
    J Trop Med, 2016;2016:2853045.
    PMID: 27956904
    Curcumin, the major constituent of Curcuma longa L. (Zingiberaceae family) or turmeric, commonly used for cooking in Asian cuisine, is known to possess a broad range of pharmacological properties at relatively nontoxic doses. Curcumin is found to be effective against Staphylococcus aureus (S. aureus). As demonstrated by in vitro experiment, curcumin exerts even more potent effects when used in combination with various other antibacterial agents. Hence, curcumin which is a natural product derived from plant is believed to have profound medicinal benefits and could be potentially developed into a naturally derived antibiotic in the future. However, there are several noteworthy challenges in the development of curcumin as a medicine. S. aureus infections, particularly those caused by the multidrug-resistant strains, have emerged as a global health issue and urgent action is needed. This review focuses on the antibacterial activities of curcumin against both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). We also attempt to highlight the potential challenges in the effort of developing curcumin into a therapeutic antibacterial agent.
    Matched MeSH terms: Biological Products
  15. Anwar A, Ting ELS, Anwar A, Ain NU, Faizi S, Shah MR, et al.
    AMB Express, 2020 Feb 03;10(1):24.
    PMID: 32016777 DOI: 10.1186/s13568-020-0960-9
    Acanthamoeba spp. are the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis (GAE). The current options to treat Acanthamoeba infections have limited success. Silver nanoparticles show antimicrobial effects and enhance the efficacy of their payload at the specific biological targets. Natural folk plants have been widely used for treating diseases as the phytochemicals from several plants have been shown to exhibit amoebicidal effects. Herein, we used natural products of plant or commercial sources including quercetin (QT), kolavenic acid (PGEA) isolated from plant extracts of Polyalthia longifolia var pendula and crude plant methanolic extract of Caesalpinia pulcherrima (CPFLM) as antiacanthamoebic agents. Furthermore, these plant-based materials were conjugated with silver nanoparticles (AgNPs) to determine the effects of the natural compounds and their nanoconjugates against a clinical isolate of A. castellanii from a keratitis patient (ATCC 50492) belonging to the T4 genotype. The compounds were conjugated with AgNPs and characterized by using ultraviolet visible spectrophotometry and atomic force microscopy. Quercetin coated silver nanoparticles (QT-AgNPs) showed characteristic surface plasmon resonance band at 443 nm and the average size distribution was found to be around 45 nm. The natural compounds alone and their nanoconjugates were tested for the viability of amoebae, encystation and excystation activity against A. castellanii. The natural compounds showed significant growth inhibition of A. castellanii while QT-AgNPs specifically exhibited enhanced antiamoebic effects as well as interrupted the encystation and excystation activity of the amoebae. Interestingly, these compounds and nanoconjugates did not exhibit in vitro cytotoxic effects against human cells. Plant-based compounds and extracts could be an interesting strategy in development of alternative therapeutics against Acanthamoeba infections.
    Matched MeSH terms: Biological Products
  16. Nurul Fatihah Mohamed Yusoff, Basma Ezzat Mustafa, Pram Kumar Subramaniam, Nazih Shaban Mustafa, Muhannad Ali Kashmoola, Khairani Idah Mokhtar, et al.
    MyJurnal
    Introduction:Linum usitatissimum (flax seed) has been cultivated for domestic use since prehistoric times. Its use as a dietary supplement becomes more popular nowadays. Nigella sativa seeds and oils have been widely used for centuries in the treatment of various ailments throughout the world. It is an important drug in the Indian traditional system of medicine like Unani and Ayurveda. Methods: This is a laboratory experimental in-vitro study using select-ed oral pathogens (Streptococcus mutans, Klebsiella pneumoniae and Pseudomonas aeruginosa) cultured in nutrient agar. The pathogens were then inoculated in nutrient based broth and incubation for 24hours. Linum usitatissimum and Nigella sativa extract efficacy was tested by measurement of the zone of inhibition. The result of the extracts antimicrobial activities were compared with positive control (penicillin) and negative control(Dimethyl sulfoxide DMSO). The statistical analysis was done by using SPSS18. Results: The antibacterial effect of Linum usitatissimum and Nigella sativa extract is comparable to the effect of penicillin and this study shows that flax seed extract shows more potent antibacterial effect than Nigella sativa on Streptococcus mutans and Pseudomonas aeruginosa while both extracts didn’t show an effect on Klebsiella pneumoniae. Conclusion: The results of the present study scien-tifically validate the inhibitory capacity of Linum usitatissimum or Nigella sativa as antibiotic against selective oral pathogens this will contribute towards the development of new treatment options based on natural base products.
    Matched MeSH terms: Biological Products
  17. Sulaiman SB, Idrus RBH, Hwei NM
    Polymers (Basel), 2020 Oct 19;12(10).
    PMID: 33086577 DOI: 10.3390/polym12102404
    The gelatin microsphere (GM) provides an attractive option for tissue engineering due to its versatility, as reported by various studies. This review presents the history, characteristics of, and the multiple approaches to, the production of GM, and in particular, the water in oil emulsification technique. Thereafter, the application of GM as a drug delivery system for cartilage diseases is introduced. The review then focusses on the emerging application of GM as a carrier for cells and biologics, and biologics delivery within a cartilage construct. The influence of GM on chondrocytes in terms of promoting chondrocyte proliferation and chondrogenic differentiation is highlighted. Furthermore, GM seeded with cells has been shown to have a high tendency to form aggregates; hence the concept of using GM seeded with cells as the building block for the formation of a complex tissue construct. Despite the advancement in GM research, some issues must still be addressed, particularly the improvement of GM's ability to home to defect sites. As such, the strategy of intraarticular injection of GM seeded with antibody-coated cells is proposed. By addressing this in future studies, a better-targeted delivery system, that would result in more effective intervention, can be achieved.
    Matched MeSH terms: Biological Products
  18. Amelia TSM, Lau NS, Amirul AA, Bhubalan K
    Data Brief, 2020 Aug;31:105971.
    PMID: 32685631 DOI: 10.1016/j.dib.2020.105971
    Marine sponges are acknowledged as a bacterial hotspot and resource of novel natural products or genetic material with industrial or commercial potential. However, sponge-associated bacteria are difficult to be cultivated and the production of their desirable metabolites is inadequate in terms of rate and quantity, yet bioinformatics and metagenomics tools are steadily progressing. Bacterial diversity profiles of high-microbial-abundance wild tropical marine sponges Aaptos aaptos and Xestospongia muta were obtained by sample collection at Pulau Bidong and Pulau Redang islands, 16S rRNA amplicon sequencing on Illumina HiSeq2500 platform (250 bp paired-end) and metagenomics analysis using Ribosomal Database Project (RDP) classifier. Raw sequencing data in fastq format and relative abundance histograms of the dominant 10 species are available in the public repository Discover Mendeley Data (http://dx.doi.org/10.17632/zrcks5s8xp). Filtered sequencing data of operational taxonomic unit (OTU) with chimera removed is available in NCBI accession numbers from MT464469 to MT465036.
    Matched MeSH terms: Biological Products
  19. Chew SS, Tan LT, Law JW, Pusparajah P, Goh BH, Ab Mutalib NS, et al.
    Cancers (Basel), 2020 Aug 13;12(8).
    PMID: 32823729 DOI: 10.3390/cancers12082272
    Colorectal cancer (CRC) is a global public health issue which poses a substantial humanistic and economic burden on patients, healthcare systems and society. In recent years, intestinal dysbiosis has been suggested to be involved in the pathogenesis of CRC, with specific pathogens exhibiting oncogenic potentials such as Fusobacterium nucleatum, Escherichia coli and enterotoxigenic Bacteroides fragilis having been found to contribute to CRC development. More recently, it has been shown that initiation of CRC development by these microorganisms requires the formation of biofilms. Gut microbial biofilm forms in the inner colonic mucus layer and is composed of polymicrobial communities. Biofilm results in the redistribution of colonic epithelial cell E-cadherin, increases permeability of the gut and causes a loss of function of the intestinal barrier, all of which enhance intestinal dysbiosis. This literature review aims to compile the various strategies that target these pathogenic biofilms and could potentially play a role in the prevention of CRC. We explore the potential use of natural products, silver nanoparticles, upconverting nanoparticles, thiosalicylate complexes, anti-rheumatic agent (Auranofin), probiotics and quorum-sensing inhibitors as strategies to hinder colon carcinogenesis via targeting colon-associated biofilms.
    Matched MeSH terms: Biological Products
  20. Ikram NK, Zhan X, Pan XW, King BC, Simonsen HT
    Front Plant Sci, 2015;6:129.
    PMID: 25852702 DOI: 10.3389/fpls.2015.00129
    Plants biosynthesize a great diversity of biologically active small molecules of interest for fragrances, flavors, and pharmaceuticals. Among specialized metabolites, terpenoids represent the greatest molecular diversity. Many terpenoids are very complex, and total chemical synthesis often requires many steps and difficult chemical reactions, resulting in a low final yield or incorrect stereochemistry. Several drug candidates with terpene skeletons are difficult to obtain by chemical synthesis due to their large number of chiral centers. Thus, biological production remains the preferred method for industrial production for many of these compounds. However, because these chemicals are often found in low abundance in the native plant, or are produced in plants which are difficult to cultivate, there is great interest in engineering increased production or expression of the biosynthetic pathways in heterologous hosts. Although there are many examples of successful engineering of microbes such as yeast or bacteria to produce these compounds, this often requires extensive changes to the host organism's metabolism. Optimization of plant gene expression, post-translational protein modifications, subcellular localization, and other factors often present challenges. To address the future demand for natural products used as drugs, new platforms are being established that are better suited for heterologous production of plant metabolites. Specifically, direct metabolic engineering of plants can provide effective heterologous expression for production of valuable plant-derived natural products. In this review, our primary focus is on small terpenoids and we discuss the benefits of plant expression platforms and provide several successful examples of stable production of small terpenoids in plants.
    Matched MeSH terms: Biological Products
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links