Displaying publications 81 - 94 of 94 in total

Abstract:
Sort:
  1. Tan PH, Teng XX, Gan ZY, Tan SQ
    Malays J Med Sci, 2020 Jul;27(4):139-146.
    PMID: 32863753 MyJurnal DOI: 10.21315/mjms2020.27.4.13
    Background: Appendicitis complicated with appendiceal perforation is common among children. The delay in diagnosis of appendicitis is due to children's varied presentations and their difficulty in communicating symptoms. We aimed to identify clinical factors that aid in predicting acute appendicitis (AA) and perforated appendicitis (PA) among children.

    Methods: This retrospective study involved 215 children aged 12 years and below with the initial diagnosis of AA and PA. Clinical factors studied were demographics, presenting symptoms, body temperature on admission (BTOA), white cell count (WCC), absolute neutrophil count (ANC), platelet count and urinalysis. Simple and multiple logistic regressions were used to determine the odds ratio of the statistically significant clinical factors. Results: The mean age of the included children was 7.98 ± 2.37 years. The odds of AA increased by 2.177 times when the age was ≥ 8 years (P = 0.022), 2.380 times when duration of symptoms ≥ 2 days (P = 0.011), 2.447 times with right iliac fossa (RIF) pain (P = 0.007), 2.268 times when BTOA ≥ 38 °C (P = 0.020) and 2.382 times when neutrophil percentage was ≥ 76% (P = 0.045). It decreased by 0.409 times with non-RIF pain (P = 0.007). The odds of PA was increased by 4.672 times when duration of symptoms ≥ 2 days (P = 0.005), 3.611 times when BTOA ≥ 38 °C (P = 0.015) and 3.678 times when neutrophil percentage ≥ 76% (P = 0.016). There was no significant correlation between WCC and ANC with AA and PA.

    Conclusion: Older children with longer duration of symptoms, RIF pain and higher BTOA are more likely to have appendicitis. The risk of appendiceal perforation increases with longer duration of symptoms and higher BTOA.

    Matched MeSH terms: Body Temperature
  2. Tan, Y.K., Hiew, M.W.H., Radzi, R., Khairuddin, N.H.
    Jurnal Veterinar Malaysia, 2017;29(2):20-24.
    MyJurnal
    This report describes the complications of obstructive urolithiasis in the lower urinary tract causing urinary bladder rupture in a Jamnapari buck. A 3-year-old Jamnapari buck was presented with the complaint of stranguria, subsequent anuria and a progressively distended abdomen for the past three days. Upon physical examination, body temperature, pulse rate and respiration rate were increased. Uroliths could be felt within the urethra in the ventral abdomen region. A urolith was removed via amputationof the urethral process, but the patency of the urethra could not be established. Transabdominal ultrasound revealed anechoic areas around the bladder, and the bladder was relatively small for a urinary obstructed goat. The bladder wall was thickened and shadow of sludge was observed within the bladder. Abdominocentesis was done and fluid analysis revealed that it was a haemorrhagic effusion. Blood results revealed renal disease, liver disease, muscle injury and haemoconcentration. Retrograde cystourethrogram revealed no urolithswithinthe urethra but there was leakage of the contrast agent from the bladder into the peritoneal cavity. The final diagnosis was complete blockage of the lower urinary tract leading to bladder rupture. Exploratory laparotomy was done and emergency cystorraphy was planned. Due to the poor condition of the urinary bladder with presence of septic peritonitis, the goat was euthanised.
    Matched MeSH terms: Body Temperature
  3. Thonis A, Ceballos RM, Tuen AA, Lovegrove BG, Levesque DL
    Physiol Biochem Zool, 2020 3 21;93(3):199-209.
    PMID: 32196407 DOI: 10.1086/708467
    Tropical ectotherms are generally believed to be more vulnerable to global heating than temperate species. Currently, however, we have insufficient knowledge of the thermoregulatory physiology of equatorial tropical mammals, particularly of small diurnal mammals, to enable similar predictions. In this study, we measured the resting metabolic rates (via oxygen consumption) of wild-caught lesser treeshrews (Tupaia minor, order Scandentia) over a range of ambient temperatures. We predicted that, similar to other treeshrews, T. minor would exhibit more flexibility in body temperature regulation and a wider thermoneutral zone compared with other small mammals because these thermoregulatory traits provide both energy and water savings at high ambient temperatures. Basal metabolic rate was on average

    1.03
    ±
    0.10

    mL O2 h-1 g-1, which is within the range predicted for a 65-g mammal. We calculated the lower critical temperature of the thermoneutral zone at 31.0°C (95% confidence interval: 29.3°-32.7°C), but using metabolic rates alone, we could not determine the upper critical temperature at ambient temperatures as high as 36°C. The thermoregulatory characteristics of lesser treeshrews provide a means of saving energy and water at temperatures well in excess of their current environmental temperatures. Our research highlights the knowledge gaps in our understanding of the energetics of mammals living in high-temperature environments, specifically in the equatorial tropics, and questions the purported lack of variance in the upper critical temperatures of the thermoneutral zone in mammals, emphasizing the importance of further research in the tropics.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  4. Ullah I, Khan I, Shafie S
    Sci Rep, 2017 04 25;7(1):1113.
    PMID: 28442747 DOI: 10.1038/s41598-017-01205-5
    Unsteady mixed convection flow of Casson fluid towards a nonlinearly stretching sheet with the slip and convective boundary conditions is analyzed in this work. The effects of Soret Dufour, viscous dissipation and heat generation/absorption are also investigated. After using some suitable transformations, the unsteady nonlinear problem is solved by using Keller-box method. Numerical solutions for wall shear stress and high temperature transfer rate are calculated and compared with previously published work, an excellent arrangement is followed. It is noticed that fluid velocity reduces for both local unsteadiness and Casson parameters. It is likewise noticed that the influence of a Dufour number of dimensionless temperature is more prominent as compared to species concentration. Furthermore, the temperature was found to be increased in the case of nonlinear thermal radiation.
    Matched MeSH terms: Body Temperature Regulation
  5. Wahab AA, Salim MI, Ahamat MA, Manaf NA, Yunus J, Lai KW
    Med Biol Eng Comput, 2016 Sep;54(9):1363-73.
    PMID: 26463520 DOI: 10.1007/s11517-015-1403-7
    Breast cancer is the most common cancer among women globally, and the number of young women diagnosed with this disease is gradually increasing over the years. Mammography is the current gold-standard technique although it is known to be less sensitive in detecting tumors in woman with dense breast tissue. Detecting an early-stage tumor in young women is very crucial for better survival chance and treatment. The thermography technique has the capability to provide an additional functional information on physiological changes to mammography by describing thermal and vascular properties of the tissues. Studies on breast thermography have been carried out to improve the accuracy level of the thermography technique in various perspectives. However, the limitation of gathering women affected by cancer in different age groups had necessitated this comprehensive study which is aimed to investigate the effect of different density levels on the surface temperature distribution profile of the breast models. These models, namely extremely dense (ED), heterogeneously dense (HD), scattered fibroglandular (SF), and predominantly fatty (PF), with embedded tumors were developed using the finite element method. A conventional Pennes' bioheat model was used to perform the numerical simulation on different case studies, and the results obtained were then compared using a hypothesis statistical analysis method to the reference breast model developed previously. The results obtained show that ED, SF, and PF breast models had significant mean differences in surface temperature profile with a p value <0.025, while HD breast model data pair agreed with the null hypothesis formulated due to the comparable tissue composition percentage to the reference model. The findings suggested that various breast density levels should be considered as a contributing factor to the surface thermal distribution profile alteration in both breast cancer detection and analysis when using the thermography technique.
    Matched MeSH terms: Body Temperature
  6. Wakabayashi H, Wijayanto T, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    PMID: 24490869 DOI: 10.1186/1880-6805-33-5
    This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  7. Wakabayashi H, Wijayanto T, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    Int J Biometeorol, 2011 Jul;55(4):509-17.
    PMID: 20949285 DOI: 10.1007/s00484-010-0374-5
    This study investigated the differences in heat dissipation response to intense heat stress during exercise in hot and humid environments between tropical and temperate indigenes with matched physical characteristics. Ten Japanese (JP) and ten Malaysian (MY) males participated in this study. Subjects performed exercise for 60 min at 55% peak oxygen uptake in 32°C air with 70% relative humidity, followed by 30 min recovery. The increase in rectal temperature (T(re)) was smaller in MY during exercise compared to JP. The local sweat rate and total body mass loss were similar in both groups. Both skin blood flow and mean skin temperature was lower in MY compared to JP. A significantly greater increase in hand skin temperature was observed in MY during exercise, which is attributable to heat loss due to the greater surface area to mass ratio and large number of arteriovenous anastomoses. Also, the smaller increase in T(re) in MY may be explained by the presence of a significantly greater core-skin temperature gradient in MY than JP. The thermal gradient is also a major factor in increasing the convective heat transfer from core to skin as well as skin blood flow. It is concluded that the greater core-skin temperature gradient observed in MY is responsible for the smaller increase in T(re).
    Matched MeSH terms: Body Temperature Regulation/physiology*
  8. Wijayanto T, Wakabayashi H, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    Int J Biometeorol, 2011 Jul;55(4):491-500.
    PMID: 20824480 DOI: 10.1007/s00484-010-0358-5
    The objective of this study was to investigate thermoregulatory responses to heat in tropical (Malaysian) and temperate (Japanese) natives, during 60 min of passive heating. Ten Japanese (mean ages: 20.8 ± 0.9 years) and ten Malaysian males (mean ages: 22.3 ± 1.6 years) with matched morphological characteristics and physical fitness participated in this study. Passive heating was induced through leg immersion in hot water (42°C) for 60 min under conditions of 28°C air temperature and 50% RH. Local sweat rate on the forehead and thigh were significantly lower in Malaysians during leg immersion, but no significant differences in total sweat rate were observed between Malaysians (86.3 ± 11.8 g m(-2) h(-1)) and Japanese (83.2 ± 6.4 g m(-2) h(-1)) after leg immersion. In addition, Malaysians displayed a smaller rise in rectal temperature (0.3 ± 0.1°C) than Japanese (0.7 ± 0.1°C) during leg immersion, with a greater increase in hand skin temperature. Skin blood flow was significantly lower on the forehead and forearm in Malaysians during leg immersion. No significant different in mean skin temperature during leg immersion was observed between the two groups. These findings indicated that regional differences in body sweating distribution might exist between Malaysians and Japanese during heat exposure, with more uniform distribution of local sweat rate over the whole body among tropical Malaysians. Altogether, Malaysians appear to display enhanced efficiency of thermal sweating and thermoregulatory responses in dissipating heat loss during heat loading. Thermoregulatory differences between tropical and temperate natives in this study can be interpreted as a result of heat adaptations to physiological function.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  9. Willmott AGB, Hayes M, James CA, Dekerle J, Gibson OR, Maxwell NS
    Physiol Rep, 2018 Dec;6(24):e13936.
    PMID: 30575321 DOI: 10.14814/phy2.13936
    This experiment aimed to investigate the efficacy of twice-daily, nonconsecutive heat acclimation (TDHA) in comparison to once-daily heat acclimation (ODHA) and work matched once- or twice-daily temperate exercise (ODTEMP, TDTEMP) for inducing heat adaptations, improved exercise tolerance, and cytokine (immune) responses. Forty males, matched biophysically and for aerobic capacity, were assigned to ODHA, TDHA, ODTEMP, or TDTEMP. Participants completed a cycling-graded exercise test, heat acclimation state test, and a time to task failure (TTTF) at 80% peak power output in temperate (TTTFTEMP : 22°C/40% RH) and hot conditions (TTTFHOT : 38°C/20% RH), before and after 10-sessions (60 min of cycling at ~2 W·kg-1 ) in 45°C/20% RH (ODHA and TDHA) or 22°C/40% RH (ODTEMP or TDTEMP). Plasma IL-6, TNF-α, and cortisol were measured pre- and postsessions 1, 5, and 10. ODHA and TDHA induced equivalent heat adaptations (P  0.05) following ODHA (+14 ± 4%), TDHA (14 ± 8%), ODTEMP (9 ± 10%) or TDTEMP (8 ± 13%). Acute (P  0.05) increases were observed in IL-6, TNF-α, or cortisol during ODHA and TDHA, or ODTEMP and TDTEMP. Once- and twice-daily heat acclimation conferred similar magnitudes of heat adaptation and exercise tolerance improvements, without differentially altering immune function, thus nonconsecutive TDHA provides an effective, logistically flexible method of HA, benefitting individuals preparing for exercise-heat stress.
    Matched MeSH terms: Body Temperature Regulation
  10. Yahaya Shagaiya Daniel, Zainal Abdul Aziz, Zuhaila Ismail, Faisal Salah
    MATEMATIKA, 2018;34(2):393-417.
    MyJurnal
    Analyzed the effects of thermal radiation, chemical reaction, heat gener-
    ation/absorption, magnetic and electric fields on unsteady flow and heat transfer of
    nanofluid. The transport equations used passively controlled. A similarity solution is
    employed to transformed the governing equations from partial differential equations to
    a set of ordinary differential equations, and then solve using Keller box method. It was
    found that the temperature is a decreasing function with the thermal stratification due to
    the fact the density of the fluid in the lower vicinity is much higher compared to the upper
    region, whereas the thermal radiation, viscous dissipation and heat generation enhanced
    the nanofluid temperature and thermal layer thickness.
    Matched MeSH terms: Body Temperature Regulation
  11. Yam MF, Ang LF, Basir R, Salman IM, Ameer OZ, Asmawi MZ
    Inflammopharmacology, 2009 Feb;17(1):50-4.
    PMID: 19127348 DOI: 10.1007/s10787-008-8038-3
    The anti-pyretic activity of a standardized methanol/water (50/50) extract of Orthosiphon stamineus Benth. (SEOS) was investigated for its effect on normal body temperature and yeast-induced pyrexia in Sprague Dawley (SD) rats. The SEOS showed no effect on normal body temperature. Doses of 500 and 1000 mg/kg body weight of SEOS significantly reduced the yeast-induced elevation in body temperature. This effect persisted up to 4 h following the administration of the extract. The anti-pyretic effect of SEOS was comparable with that of paracetamol (acetaminophen in U.S) (150 mg/kg p.o.), a standard anti-pyretic agent. HPLC study revealed that rosmarinic acid, sinensetin, eupatorin and tetramethoxyflavone were present in SEOS in the amounts of 7.58%, 0.2%, 0.34% and 0.24% respectively. The LD(50) of the extract in rats was higher than 5000 mg/kg body weight. Therefore, the present study ascertained that SEOS possesses a significant anti-pyretic activity.
    Matched MeSH terms: Body Temperature/drug effects
  12. Yasmin F, Tamrin KF, Sheikh NA, Barroy P, Yassin A, Khan AA, et al.
    Materials (Basel), 2021 Mar 09;14(5).
    PMID: 33803364 DOI: 10.3390/ma14051311
    Laser-assisted high speed milling is a subtractive machining method that employs a laser to thermally soften a difficult-to-cut material's surface in order to enhance machinability at a high material removal rate with improved surface finish and tool life. However, this machining with high speed leads to high friction between workpiece and tool, and can result in high temperatures, impairing the surface quality. Use of conventional cutting fluid may not effectively control the heat generation. Besides, vegetable-based cutting fluids are invariably a major source of food insecurity of edible oils which is traditionally used as a staple food in many countries. Thus, the primary objective of this study is to experimentally investigate the effects of water-soluble sago starch-based cutting fluid on surface roughness and tool's flank wear using response surface methodology (RSM) while machining of 316 stainless steel. In order to observe the comparison, the experiments with same machining parameters are conducted with conventional cutting fluid. The prepared water-soluble sago starch based cutting fluid showed excellent cooling and lubricating performance. Therefore, in comparison to the machining using conventional cutting fluid, a decrease of 48.23% in surface roughness and 38.41% in flank wear were noted using presented approach. Furthermore, using the extreme learning machine (ELM), the obtained data is modeled to predict surface roughness and flank wear and showed good agreement between observations and predictions.
    Matched MeSH terms: Body Temperature Regulation
  13. Yoneda M, Georges-Courbot MC, Ikeda F, Ishii M, Nagata N, Jacquot F, et al.
    PLoS One, 2013;8(3):e58414.
    PMID: 23516477 DOI: 10.1371/journal.pone.0058414
    Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.
    Matched MeSH terms: Body Temperature
  14. Zainuddin N, Saleh H, Hashim I, Roslan R
    Sains Malaysiana, 2016;45:315-321.
    Effects of radiation on free convection about a heated horizontal circular cylinder in the presence of heat generation is investigated numerically. The cylinder is fixed and immersed in a stationary fluid, in which the temperature is uniformly heated about the temperature of the surrounding fluid. The governing equations are transformed into dimensionless non-linear partial differential equations and solved by employing a finite difference method. An implicit finite difference scheme of Crank Nicolson method is used to analyze the results. This study determined the effects of radiation parameter, heat generation parameter, and the Prandtl number, on the temperature and velocity profiles. The results of the local heat transfer and skin-friction coefficient in the presence of radiation for some selected values of and are shown graphically.
    Matched MeSH terms: Body Temperature Regulation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links