Displaying publications 81 - 100 of 160 in total

Abstract:
Sort:
  1. Zaliha O, Elina H, Sivaruby K, Norizzah AR, Marangoni AG
    J Oleo Sci, 2018 Jun 01;67(6):737-744.
    PMID: 29760328 DOI: 10.5650/jos.ess17168
    The in situ polymorphic forms and thermal transitions of refined, bleached and deodorized palm oil (RBDPO), palm stearin (RBDPS) and palm kernel oil (RBDPKO) were investigated using coupled X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results indicated that the DSC onset crystallisation temperature of RBDPO was at 22.6°C, with a single reflection at 4.2Å started to appear from 23.4 to 17.1°C, and were followed by two prominent exothermic peaks at 20.1°C and 8.5°C respectively. Further cooling to -40°C leads to the further formation of a β'polymorph. Upon heating, a of β'→βtransformation was observed between 32.1 to 40.8°C, before the sample was completely melted at 43.0°C. The crystallization onset temperature of RBDPS was 44.1°C, with the appearance of the α polymorph at the same temperature as the appearance of the first sharp DSC exothermic peak. This quickly changed from α→β´ in the range 25 to 21.7°C, along with the formation of a small β peak at -40°C. Upon heating, a small XRD peak for the β polymorph was observed between 32.2 to 36.0°C, becoming a mixture of (β´+ β) between 44.0 to 52.5°C. Only the β polymorph survived further heating to 59.8°C. For RBDPKO, the crystallization onset temperature was 11.6°C, with the formation of a single sharp exothermic peak at 6.5°C corresponding to the β' polymorphic form until the temperature reached -40°C. No transformation of the polymorphic form was observed during the melting process of RBDPKO, before being completely melted at 33.2°C. This work has demonstrated the detailed dynamics of polymorphic transformations of PKO and PS, two commercially important hardstocks used widely by industry and will contribute to a greater understanding of their crystallization and melting dynamics.
    Matched MeSH terms: Calorimetry, Differential Scanning*
  2. Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN
    J Pharm Biomed Anal, 2007 Jan 17;43(2):549-57.
    PMID: 16978823
    The applicability of microwave non-destructive testing (NDT) technique in characterization of matrix property of pharmaceutical films was investigated. Hydroxypropylmethylcellulose and loratadine were selected as model matrix polymer and drug, respectively. Both blank and drug loaded hydroxypropylmethylcellulose films were prepared using the solvent-evaporation method and were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using microwave NDT technique as well as ultraviolet spectrophotometry, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) techniques. The results indicated that blank hydroxypropylmethylcellulose film exhibited a greater propensity of polymer-polymer interaction at the O-H and C-H domains of the polymer chains upon conditioned at a lower level of relative humidity. In the case of loratadine loaded films, a greater propensity of polymer-polymer and/or drug-polymer interaction via the O-H moiety was mediated in samples conditioned at the lower level of relative humidity, and via the C-H moiety when 50% relative humidity was selected as the condition for sample storage. Apparently, the absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer and/or drug-polymer interaction involving the O-H and C-H moieties. The measurement of microwave NDT test at 8GHz was sensitive to the chemical environment involving O-H moiety while it was greatly governed by the C-H moiety in test conducted at a higher frequency band of microwave. Similar observation was obtained with respect to the profiles of microwave NDT measurements against the state of polymer-polymer and/or drug-polymer interaction of hydroxypropylmethylcellulose films containing chlorpheniramine maleate. The microwave NDT measurement is potentially suitable for use as an apparent indicator of the state of polymer-polymer and drug-polymer interaction of the matrix.
    Matched MeSH terms: Calorimetry, Differential Scanning
  3. Aisha AF, Ismail Z, Abu-Salah KM, Majid AM
    J Pharm Sci, 2012 Feb;101(2):815-25.
    PMID: 22081501 DOI: 10.1002/jps.22806
    α-Mangostin is an oxygenated heterocyclic xanthone with remarkable pharmacological properties, but poor aqueous solubility and low oral bioavailability hinder its therapeutic application. This study sought to improve the compound's solubility and study the mechanism underlying solubility enhancement. Solid dispersions of α-mangostin were prepared in polyvinylpyrrolidone (PVP) by solvent evaporation method and showed substantial enhancement of α-mangostin's solubility from 0.2 ± 0.2 μg/mL to 2743 ± 11 μg/mL. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated interaction between α-mangostin and PVP. Transmission electron microscopy and dynamic light scattering showed self-assembly of round anionic nanomicelles with particle size in the range 99-127 nm. Powder X-ray diffraction indicated conversion of α-mangostin from crystalline into amorphous state, and scanning electron microscopy showed the presence of highly porous powder. Studies using the fluorescent probe pyrene showed that the critical micellar concentration is about 77.4 ± 4 μg/mL. Cellular uptake of nanomicelles was found to be mediated via endocytosis and indicated intracellular delivery of α-mangostin associated with potent cytotoxicity (median inhibitory concentration of 8.9 ± 0.2 μg/mL). Improved solubility, self-assembly of nanomicelles, and intracellular delivery through endocytosis may enhance the pharmacological properties of α-mangostin, particularly antitumor efficacy.
    Matched MeSH terms: Calorimetry, Differential Scanning
  4. Nurulaini H, Wong TW
    J Pharm Sci, 2011 Jun;100(6):2248-57.
    PMID: 21213311 DOI: 10.1002/jps.22459
    Conventional alginate pellets underwent rapid drug dissolution and loss of multiparticulate characteristics such as aggregation in acidic medium, thereby promoting oral dose dumping. This study aimed to design sustained-release dispersible alginate pellets through rapid in situ matrix dispersion and cross-linking by calcium salts during dissolution. Pellets made of alginate and calcium salts were prepared using a solvent-free melt pelletization technique that prevented reaction between processing materials during agglomeration and allowed such a reaction to occur only in dissolution phase. Drug release was remarkably retarded in acidic medium when pellets were formulated with water-soluble calcium acetate instead of acid-soluble calcium carbonate. Different from calcium salt-free and calcium carbonate-loaded matrices that aggregated or underwent gradual erosion, rapid in situ solvation of calcium acetate in pellets during dissolution resulted in burst of gas bubbles, fast pellet breakup, and dispersion. The dispersed fragments, though exhibiting a larger specific surface area for drug dissolution than intact matrix, were rapidly cross-linked by Ca(2+) from calcium acetate and had drug release retarded till a change in medium pH from 1.2 to 6.8. Being dispersible and pH-dependent in drug dissolution, these pellets are useful as multiparticulate intestinal-specific drug carrier without exhibiting dose dumping tendency of a "single-unit-like" system via pellet aggregation.
    Matched MeSH terms: Calorimetry, Differential Scanning
  5. Chieng N, Teo X, Cheah MH, Choo ML, Chung J, Hew TK, et al.
    J Pharm Sci, 2019 12;108(12):3848-3858.
    PMID: 31542436 DOI: 10.1016/j.xphs.2019.09.013
    The study aims to characterize the structural relaxation times of quench-cooled co-amorphous systems using Kohlrausch-Williams-Watts (KWW) and to correlate the relaxation data with the onset of crystallization. Comparison was also made between the relaxation times obtained by KWW and the width of glass transition temperature (ΔTg) methods (simple and quick). Differential scanning calorimetry, Fourier-transformed infrared spectroscopy, and polarized light microscopy were used to characterize the systems. Results showed that co-amorphous systems yielded a single Tg and ΔCp, suggesting the binary mixtures exist as a single amorphous phase. A narrow step change at Tg indicates the systems were fragile glasses. In co-amorphous nap-indo and para-indo, experimental Tgs were in good agreement with the predicted Tg. However, the Tg of co-amorphous nap-cim and indo-cim were 20°C higher than the predicted Tg, possibly due to stronger molecular interactions. Structural relaxation times below the experimental Tg were successfully characterized using the KWW and ΔTg methods. The comparison plot showed that KWW data are directly proportional to the ½ power of ΔTg data, after adjusting for a small offset. A moderate positive correlation was observed between the onset of crystallization and the KWW data. Structural relaxation times may be useful predictor of physical stability of co-amorphous systems.
    Matched MeSH terms: Calorimetry, Differential Scanning/methods
  6. Dua K, Pabreja K, Ramana MV, Lather V
    J Pharm Bioallied Sci, 2011 Jul;3(3):417-25.
    PMID: 21966164 DOI: 10.4103/0975-7406.84457
    The objective of the present investigation was to study the effect of β-cyclodextrin (β-CD) on the in vitro dissolution of aceclofenac (AF) from molecular inclusion complexes. Aceclofenac molecular inclusion complexes in 1:1 and 1:2 M ratio were prepared using a kneading method. The in vitro dissolution of pure drug, physical mixtures, and cyclodextrin inclusion complexes was carried out. Molecular inclusion complexes of AF with β-CD showed a considerable increase in the dissolution rate in comparison with the physical mixture and pure drug in 0.1 N HCl, pH 1.2, and phosphate buffer, pH 7.4. Inclusion complexes with a 1:2 M ratio showed the maximum dissolution rate in comparison to other ratios. Fourier transform infrared spectroscopy and differential scanning calorimetry studies indicated no interaction between AF and β-CD in complexes in solid state. Molecular modeling results indicated the relative energetic stability of the β-CD dimer-AF complex as compared to β-CD monomer-AF. Dissolution enhancement was attributed to the formation of water soluble inclusion complexes with β-CD. The in vitro release from all the formulations was best described by first-order kinetics (R(2) = 0.9826 and 0.9938 in 0.1 N HCl and phosphate buffer, respectively) followed by the Higuchi release model (R(2) = 0.9542 and 0.9686 in 0.1 N HCl and phosphate buffer, respectively). In conclusion, the dissolution of AF can be enhanced by the use of a hydrophilic carrier like β-CD.
    Matched MeSH terms: Calorimetry, Differential Scanning
  7. Cheong LZ, Tan CP, Long K, Affandi Yusoff MS, Lai OM
    J Sci Food Agric, 2010 Oct;90(13):2310-7.
    PMID: 20661900 DOI: 10.1002/jsfa.4088
    Diacylglycerol (DAG), which has health-enhancing properties, is sometimes added to bakery shortening to produce baked products with enhanced physical functionality. Nevertheless, the quantity present is often too little to exert any positive healthful effects. This research aimed to produce bakery shortenings containing significant amounts of palm diacyglycerol (PDG). Physicochemical, textural and viscoelastic properties of the PDG bakery shortenings during 3 months storage were evaluated and compared with those of commercial bakery shortening (CS).
    Matched MeSH terms: Calorimetry, Differential Scanning
  8. Ibrahim, I., Abdul Manan, M.J., Kamaruddin, H.
    MyJurnal
    Haruan or Channa striatus is source of protein that is widely consumed in the region and its extract
    is well known for having medical values. It is of great advantage if this product could be taken
    orally rather than by injection because the oral route of drug delivery is still preferred by the vast
    majority of patients. However protein and peptides can be denatured or degraded by the acidic pH
    of the stomach and the presence of endogenous enzymes. In order to protect or prevent digestion
    and degradation of the protein in the stomach and to ensure the protein reaches the gastro
    intestinal (GI) tract, Carboxymethyl Starch (CMS) nanogel system was developed using electron
    irradiation method. However stability of HTE during the irradiation process needed to be studied
    before being developed further. In this study, the HTE was irradiated using electron beams. Its
    stability was analysed in terms of physical and chemical changes by looking at colour difference,
    melting point by using Differential Scanning Calorimetry (DSC) and molecular bonds by using
    Fourier Transform Infrared (FTIR) respectively. The results of this study were that no apparent
    colour difference was observed with HTE before and after irradiation. These observations were
    supported by the FTIR and DSC results that showed that there were no changes in molecular bonds
    and melting point, compared between no irradiation and irradiation HTE during electron
    irradiation up to 10 kGy. Statistically the test showed no significant difference at p < 0.005 between
    melting temperatures.
    Matched MeSH terms: Calorimetry, Differential Scanning
  9. Krishnamoorthy R., Bibhu Prasad Panda, Shivashekaregowda N. K. H., Low B. S., Bhattamisra S. K.
    MyJurnal
    Introduction: Second generation functionalized nanocrystal is the advancement of nanocrystal technology with great potential to accommodate BCS (Biopharmaceutical Classification System) class II drugs to meet their formulation and drug delivery challenges. Gliclazide is a BCS class II drug used in the treatment of type 2 diabetes, shows poor water solubility and low rate of dissolution, leads to poor and variable oral bioavailability. The second generation poly(D,L-lactide-co-glycolide) (PLGA) Hydroxypropyl methylcellulose (HPMC) based functionalized nanocrystals of gliclazide were prepared by a combination method of emulsion diffusion-high pressure homogenization-solvent evaporation. Methods: Gliclazide second generation nanocrystals were fabricated with taguchi orthogonal experimental design in combination of step up and top down nanoformulation strategies using drug-polymer (PLGA) ratio at 1:0.5, 1:0.75, 1:1 with HPMC(0.5, 0.75, 1% w/v) as stabilizer. The formulated gliclazide PLGA-HPMC nanocrystals were investigated on particle size, polydispersity index, zeta potential, solubility study, drug entrapment efficiency, in vitro drug release, and surface morphology and compatibility studies. The gliclazide PLGA nanocrystals formulation was prepared with Drug : PLGA at 1: 1 ratio with concentrations 0.75% w/v HPMC at 5 homogenization cycles with 1000bar produce optimized gliclazide nanocrystals. Results: The optimized MSGNC8 formulation
    showed particle size of 239.9 nm, entrapment efficiency 98.62%, and drug release of 43.75%, 82.12% and 98.08% at 3hrs, 24hrs, and 48hrs compared to pure gliclazide % drug release of 28.73%, 67.51% and 78.41% at 3hrs, 24hrs, 48hrs respectively. The solubility study of optimized formulation shows eight folds increased in saturation solubility compared to pure drug. Scanning electron microscopy (SEM) analysis of the gliclazide nanocrystals revealed that
    gliclazide retained its crystal morphology in polymeric nanocrystals. Further, fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) studies on gliclazide PLGA-HPMC nanocrystals emphasize drug and excipient compatibility in development of gliclazide nanocrystals. Conclusion: The potential outcomes of research findings emphasize that the developed gliclazide second-generation nanocrystals, which resulted in increase in drug solubility and rate of dissolution with delayed modified release, can be explored in delivery of gliclazide for type 2 diabetes management.
    Matched MeSH terms: Calorimetry, Differential Scanning
  10. Venkateskumar Krishnamoorthy, Verma Priya Ranjan Prasad, Suchandrasen Sen
    MyJurnal
    exhibits extensive first pass metabolism with poor oral bioavailability (27%–50%) limiting its therapeutic efficiency. The present study involved an attempt to enhance its aqueous solubility by formulating as solid dispersions (SDs) using sodium starch glycollate (SSG) as a carrier. The dispersions were formulated by dispersion method and evaluated by phase solubility, drug content, in vitro release and mathematical modelling. Solid state characterisation of samples was carried out by X-ray diffraction (XRD), differential scanning calorimetric (DSC), Fourier transform infrared spectrophotometry (FTIR), near infrared (NIR), Raman analysis and wettability studies. The phase solubility and thermodynamic parameters indicated the spontaneity and solubilisation effect of carrier. The release rate from the dispersions was higher than pure drug and found to increase with an increase in carrier content. The optimised dispersions were selected based on release studies, profiles and dissolution parameters. XRD, DSC, FTIR, NIR and Raman analysis proved the crystallinity reduction, changes in crystal quality and compatibility between drug and carriers. Wettability studies proved the increased wettability in selected dispersions. Based on the findings, possible mechanisms that would have contributed to dissolution enhancement of CLZ were suggested. Such findings could be extrapolated to enhance the aqueous solubility of other poorly water-soluble drugs.
    Matched MeSH terms: Calorimetry, Differential Scanning
  11. Al Balawi AN, Yusof NA, Kamaruzaman S, Mohammad F, Wasoh H, Al-Lohedan HA
    Materials (Basel), 2019 Apr 11;12(7).
    PMID: 30978916 DOI: 10.3390/ma12071178
    The present study deals with the synthesis, characterization, and DNA extraction of poly(4,4'-cyclohexylidene bisphenol oxalate)/silica (Si) nanocomposites (NCs). The effects of varying the monomer/Si (3.7%, 7%, and 13%) ratio towards the size and morphology of the resulting NC and its DNA extraction capabilities have also been studied. For the NC synthesis, two different methods were followed, including the direct mixing of poly(4,4'-cyclohexylidene bisphenol oxalate) with fumed Si, and in situ polymerization of the 4,4'-cyclohexylidene bisphenol monomer in the presence of fumed silica (11 nm). The formed NCs were thoroughly investigated by using different techniques such as scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powdered X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis where the results supported that there was the successful formation of poly(4,4'-cyclohexylidene bisphenol oxalate)/Si NC. Within the three different NC samples, the one with 13% Si was found to maintain a very high surface area of 12.237 m²/g, as compared to the other two samples consisting of 7% Si (3.362 m²/g) and 3.7% Si (1.788 m²/g). Further, the solid phase DNA extraction studies indicated that the efficiency is strongly influenced by the amount of polymer (0.2 g > 0.1 g > 0.02 g) and the type of binding buffer. Among the three binding buffers tested, the guanidine hydrochloride/EtOH buffer produced the most satisfactory results in terms of yield (1,348,000 ng) and extraction efficiency (3370 ng/mL) as compared to the other two buffers of NaCl (2 M) and phosphate buffered silane. Based on our results, it can be indicated that the developed poly(4,4'-cyclohexylidene bisphenol oxalate)/Si NC can serve as one of the suitable candidates for the extraction of DNA in high amounts as compared to other traditional solid phase approaches.
    Matched MeSH terms: Calorimetry, Differential Scanning
  12. Al-Saleh MA, Yussuf AA, Al-Enezi S, Kazemi R, Wahit MU, Al-Shammari T, et al.
    Materials (Basel), 2019 Nov 27;12(23).
    PMID: 31783544 DOI: 10.3390/ma12233924
    In this research work, graphene nanoplatelets (GNP) were selected as alternative reinforcing nanofillers to enhance the properties of polypropylene (PP) using different compatibilizers called polypropylene grafted maleic anhydride (PP-g-MA) and ethylene-octene elastomer grafted maleic anhydride (POE-g-MA). A twin screw extruder was used to compound PP, GNP, and either the PP-g-MA or POE-g-MA compatibilizer. The effect of GNP loading on mechanical and thermal properties of neat PP was investigated. Furthermore, the influence and performance of different compatibilizers on the final properties, such as mechanical and thermal, were discussed and reported. Tensile, flexural, impact, melting temperature, crystallization temperature, and thermal stability were evaluated by using a universal testing system, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). For mechanical properties, it was found that increasing GNP content from 1 wt.% to 5 wt.% increased tensile strength of the neat PP up to 4 MPa. The influence of compatibilizers on the mechanical properties had been discussed and reported. For instance, the addition of PP-g-MA compatibilizer improved tensile strength of neat PP with GNP loading. However, the addition of compatibilizer POE-g-MA slightly decreased the tensile strength of neat PP. A similar trend of behavior was observed for flexural strength. For thermal properties, it was found that both GNP loading and compatibilizers have no significant influence on both crystallization and melting temperature of neat PP. For thermal stability, however, it was found that increasing the GNP loading had a significant influence on improving the thermal behavior of neat PP. Furthermore, the addition of compatibilizers into the PP/GNP nanocomposite had slightly improved the thermal stability of neat PP.
    Matched MeSH terms: Calorimetry, Differential Scanning
  13. Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, M Al-Oqla F
    Materials (Basel), 2019 Jun 29;12(13).
    PMID: 31261926 DOI: 10.3390/ma12132104
    Photovoltaic module backsheets are characterized according to their thermal, optical, mechanical, and technical properties. This work introduces new fabricated backsheets for PV modules using polyvinylidene fluoride (PVDF) reinforced with short sugar palm fiber (SSPF) composites. The preparation of composites undergoes multiple phases of fabrication. Thermal, optical, and technical investigations of their properties were conducted. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, in-situ scanning probe microscopy (SPM), dynamic mechanical analysis (DMA), thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and prolonged technical testing were accomplished to expansively understand the complex behavior of composites under various conditions. The optical properties of PV backsheets are critical components in determining the reflectance, absorbance, and transmittance of light. The PVDF-SSPF composites exhibited exceptional compatibility and thermal stability, further revealing a homogenous composite structure with enhanced interfacial bonding between the short fiber and polymer matrix.
    Matched MeSH terms: Calorimetry, Differential Scanning
  14. Jamil SNAM, Daik R, Ahmad I
    Materials (Basel), 2014 Sep 01;7(9):6207-6223.
    PMID: 28788187 DOI: 10.3390/ma7096207
    A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The conversions of AN, comonomers (BA and EHA) and FN were 55%-71%, 85%-91% and 76%-79%, respectively. It was found that with the same comonomer feed (10%), the Tg of AN/EHA copolymer was lower at 63 °C compared to AN/BA copolymer (70 °C). AN/EHA/FN terpolymer also exhibited a lower Tg at 63 °C when compared to that of the AN/BA/FN terpolymer (67 °C). By incorporating BA and EHA into a PAN system, the char yield was reduced to ~38.0% compared to that of AN (~47.7%). It was found that FN reduced the initial cyclization temperature of AN/BA/FN and AN/EHA/FN terpolymers to 228 and 221 °C, respectively, in comparison to that of AN/BA and AN/EHA copolymers (~260 °C). In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. As a result, the char yields of AN/BA/FN and AN/EHA/FN terpolymers are higher at ~45.1% and ~43.9%, respectively, as compared to those of AN/BA copolymer (37.1%) and AN/EHA copolymer (38.0%).
    Matched MeSH terms: Calorimetry, Differential Scanning
  15. Silakhori M, Naghavi MS, Metselaar HSC, Mahlia TMI, Fauzi H, Mehrali M
    Materials (Basel), 2013 Apr 29;6(5):1608-1620.
    PMID: 28809232 DOI: 10.3390/ma6051608
    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.
    Matched MeSH terms: Calorimetry, Differential Scanning
  16. Salehabadi A, Bakar MA, Bakar NHHA
    Materials (Basel), 2014 Jun 13;7(6):4508-4523.
    PMID: 28788689 DOI: 10.3390/ma7064508
    Multi-component nanohybrids comprising of organo-modified montmorillonite (MMT) and immiscible biopolymer blends of poly(3-hydroxybutyrate) (PHB) and epoxidized natural rubber (ENR-50) were prepared by solvent casting technique. The one and three dimensional morphology of PHB/ENR-50/MMT systems were studied using Polarizing Optical Microscopy (POM) and Scanning Electron Microscopy (SEM). Differential scanning calorimetry (DSC) technique was used to evaluate the thermal properties of the nanohybrids. The melting temperature (Tm) and enthalpy of melting (ΔHm) of PHB decrease with respect to the increase in ENR-50 as well as MMT content. The non-isothermal decomposition of the nanohybrids was studied using thermogravimetric (TG-DTG) analysis. FTIR-ATR spectra supported ring opening of the epoxide group via reaction with carboxyl group of PHB and amines of organic modifier. The reaction mechanism towards the formation of the nanohybrids is proposed.
    Matched MeSH terms: Calorimetry, Differential Scanning
  17. Kamairudin N, Gani SS, Masoumi HR, Hashim P
    Molecules, 2014;19(10):16672-83.
    PMID: 25325152 DOI: 10.3390/molecules191016672
    The D-optimal mixture experimental design was employed to optimize the melting point of natural lipstick based on pitaya (Hylocereus polyrhizus) seed oil. The influence of the main lipstick components-pitaya seed oil (10%-25% w/w), virgin coconut oil (25%-45% w/w), beeswax (5%-25% w/w), candelilla wax (1%-5% w/w) and carnauba wax (1%-5% w/w)-were investigated with respect to the melting point properties of the lipstick formulation. The D-optimal mixture experimental design was applied to optimize the properties of lipstick by focusing on the melting point with respect to the above influencing components. The D-optimal mixture design analysis showed that the variation in the response (melting point) could be depicted as a quadratic function of the main components of the lipstick. The best combination of each significant factor determined by the D-optimal mixture design was established to be pitaya seed oil (25% w/w), virgin coconut oil (37% w/w), beeswax (17% w/w), candelilla wax (2% w/w) and carnauba wax (2% w/w). With respect to these factors, the 46.0 °C melting point property was observed experimentally, similar to the theoretical prediction of 46.5 °C. Carnauba wax is the most influential factor on this response (melting point) with its function being with respect to heat endurance. The quadratic polynomial model sufficiently fit the experimental data.
    Matched MeSH terms: Calorimetry, Differential Scanning
  18. Chieng BW, Ibrahim NA, Then YY, Loo YY
    Molecules, 2014;19(10):16024-38.
    PMID: 25299820 DOI: 10.3390/molecules191016024
    Plasticized poly(lactic acid) PLA with epoxidized vegetable oils (EVO) were prepared using a melt blending method to improve the ductility of PLA. The plasticization of the PLA with EVO lowers the Tg as well as cold-crystallization temperature. The tensile properties demonstrated that the addition of EVO to PLA led to an increase of elongation at break, but a decrease of tensile modulus. Plasticized PLA showed improvement in the elongation at break by 2058% and 4060% with the addition of 5 wt % epoxidized palm oil (EPO) and mixture of epoxidized palm oil and soybean oil (EPSO), respectively. An increase in the tensile strength was also observed in the plasticized PLA with 1 wt % EPO and EPSO. The use of EVO increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The SEM micrograph of the plasticized PLA showed good compatible morphologies without voids resulting from good interfacial adhesion between PLA and EVO. Based on the results of this study, EVO may be used as an environmentally friendly plasticizer that can improve the overall properties of PLA.
    Matched MeSH terms: Calorimetry, Differential Scanning
  19. Razavi M, Nyamathulla S, Karimian H, Moghadamtousi SZ, Noordin MI
    Molecules, 2014;19(9):13909-31.
    PMID: 25197930 DOI: 10.3390/molecules190913909
    The gastroretentive dosage form of famotidine was modified using tamarind seed powders to prolong the gastric retention time. Tamarind seeds were used in two different forms having different swelling and gelling properties: with husk (TSP) or without husk (TKP). TKP (TKP1 to TKP 6) and TSP (TSP1 to TSP 6) series were prepared using tamarind powder:xanthan in the ratios of 5:0, 4:1, 3:2, 2:3, 1:4, 0:5, respectively. The matrix tablets were prepared by the wet granulation method and evaluated for pharmacopoeial requirements. TKP2 was the optimum formulation as it had a short floating lag time (FLT<30 s) and more than 98.5% drug release in 12 h. The dissolution data were fitted to popular mathematical models to assess the mechanism of drug release, and the optimum formulation showed a predominant first order release and diffusion mechanism. It was concluded that the TKP2 prepared using tamarind kernel powder:xanthan (4:1) was the optimum formulation with shortest floating lag time and more than 90% release in the determined period of time.
    Matched MeSH terms: Calorimetry, Differential Scanning
  20. Silverajah VS, Ibrahim NA, Zainuddin N, Yunus WM, Hassan HA
    Molecules, 2012 Oct 08;17(10):11729-47.
    PMID: 23044711 DOI: 10.3390/molecules171011729
    Poly(lactic acid) (PLA) is known to be a useful material in substituting the conventional petroleum-based polymer used in packaging, due to its biodegradability and high mechanical strength. Despite the excellent properties of PLA, low flexibility has limited the application of this material. Thus, epoxidized palm olein (EPO) was incorporated into PLA at different loadings (1, 2, 3, 4 and 5 wt%) through the melt blending technique and the product was characterized. The addition of EPO resulted in a decrease in glass transition temperature and an increase of elongation-at-break, which indicates an increase in the PLA chain mobility. PLA/EPO blends also exhibited higher thermal stability than neat PLA. Further, the PLA/1 wt% EPO blend showed enhancement in the tensile, flexural and impact properties. This is due to improved interaction in the blend producing good compatible morphologies, which can be revealed by Scanning Electron Microscopy (SEM) analysis. Therefore, PLA can be efficiently plasticized by EPO and the feasibility of its use as flexible film for food packaging should be considered.
    Matched MeSH terms: Calorimetry, Differential Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links