Displaying publications 81 - 100 of 670 in total

Abstract:
Sort:
  1. Chadda KR, Ahmad S, Valli H, den Uijl I, Al-Hadithi AB, Salvage SC, et al.
    Sci Rep, 2017 09 11;7(1):11070.
    PMID: 28894151 DOI: 10.1038/s41598-017-11210-3
    Long QT Syndrome 3 (LQTS3) arises from gain-of-function Nav1.5 mutations, prolonging action potential repolarisation and electrocardiographic (ECG) QT interval, associated with increased age-dependent risk for major arrhythmic events, and paradoxical responses to β-adrenergic agents. We investigated for independent and interacting effects of age and Scn5a+/ΔKPQ genotype in anaesthetised mice modelling LQTS3 on ECG phenotypes before and following β-agonist challenge, and upon fibrotic change. Prolonged ventricular recovery was independently associated with Scn5a+/ΔKPQ and age. Ventricular activation was prolonged in old Scn5a+/ΔKPQ mice (p = 0.03). We associated Scn5a+/ΔKPQ with increased atrial and ventricular fibrosis (both: p 
    Matched MeSH terms: Disease Models, Animal
  2. Chan AML, Ng AMH, Mohd Yunus MH, Idrus RBH, Law JX, Yazid MD, et al.
    Nutrients, 2021 Jul 22;13(8).
    PMID: 34444658 DOI: 10.3390/nu13082497
    Metabolic syndrome (MetS) is the physiological clustering of hypertension, hyperglycemia, hyperinsulinemia, dyslipidemia, and insulin resistance. The MetS-related chronic illnesses encompass obesity, the cardiovascular system, renal operation, hepatic function, oncology, and mortality. To perform pre-clinical research, it is imperative that these symptoms be successfully induced and optimized in lower taxonomy. Therefore, novel and future applications for a disease model, if proven valid, can be extrapolated to humans. MetS model establishment is evaluated based on the significance of selected test parameters, paradigm shifts from new discoveries, and the accessibility of the latest technology or advanced methodologies. Ultimately, the outcome of animal studies should be advantageous for human clinical trials and solidify their position in advanced medicine for clinicians to treat and adapt to serious or specific medical situations. Rodents (Rattus norvegicus and Mus musculus) have been ideal models for mammalian studies since the 18th century and have been mapped extensively. This review compiles and compares studies published in the past five years between the multitude of rodent comparative models. The response factors, niche parameters, and replicability of diet protocols are also compiled and analyzed to offer insight into MetS-related disease-specific modelling.
    Matched MeSH terms: Disease Models, Animal
  3. Chan CY, Kwan MK, Saw LB, Paisal H
    Clin Spine Surg, 2017 03;30(2):E138-E147.
    PMID: 28207623 DOI: 10.1097/BSD.0b013e3182aa6860
    BACKGROUND CONTEXT: The clinical application of recombinant bone morphogenetic protein in spinal surgery has been shown to be safe and effective. However, its use in minimally invasive spine surgery has been limited to anterior interbody fusion procedures. To date, no study has evaluated the feasibility of percutaneous posterolateral fusion in the spine utilizing recombinant bone morphogenetic protein-2 (rhBMP-2).

    PURPOSE: To evaluate the feasibility of percutaneous posterolateral fusion in the spine utilizing rhBMP-2.

    STUDY DESIGN: Animal study.

    METHODS: This is an animal research model involving 32 New Zealand white rabbits stratified into 4 study groups: control, autogenous iliac crest bone graft (ICBG), demineralized bone matrix (DBM), and rhBMP-2 groups, with 8 study subjects per group. The rhBMP-2 group was subdivided into the open technique (right side) and the percutaneous technique groups (left side). Fusion was graded at 6 weeks and 3 months after plain radiography, computed tomography, and clinical assessment with the following grading system: grade A, no bone formation; grade B, non-bridging bone formation; grade C, fusion; and grade D, fusion with ectopic bone formation.

    RESULTS: No fusion was noted in the placebo and the DBM groups. However, in the DBM group, bone formation occurred in 37.5% of the subjects. The rhBMP-2 group had a higher fusion rate compared with the ICBG group at 6 weeks and 3 months. The fusion rate for the ICBG, the rhBMP-2 (open), and the rhBMP-2 (percutaneous) groups were 37.5%, 87.5%, and 50.0% at 6 weeks and 50.0%, 100.0%, and 62.5% at 3 months, respectively. Ectopic bone formation occurred in 12.5% of the cases in the rhBMP-2 (percutaneous) group and in 25.0% of the cases in the rhBMP-2 (open) group.

    CONCLUSIONS: Usage of rhBMP-2 is feasible for percutaneous posterolateral fusion of the lumbar spine in this animal model. However, a more precise delivery system might improve the fusion rate when the percutaneous technique is used. A significant rate of ectopic bone formation occurred when rhBMP-2 was used.

    Matched MeSH terms: Disease Models, Animal
  4. Chang HC, Tsai TS, Tsai IH
    J Proteomics, 2013 Aug 26;89:141-53.
    PMID: 23796489 DOI: 10.1016/j.jprot.2013.06.012
    This study deciphers the geographic variations of king cobra (Ophiophagus hannah) venom using functional proteomics. Pooled samples of king cobra venom (abbreviated as Ohv) were obtained from Indonesia, Malaysia, Thailand, and two provinces of China, namely Guangxi and Hainan. Using two animal models to test and compare the lethal effects, we found that the Chinese Ohvs were more fatal to mice, while the Southeast Asian Ohvs were more fatal to lizards (Eutropis multifasciata). Various phospholipases A2 (PLA2s), three-finger toxins (3FTxs) and Kunitz-type inhibitors were purified from these Ohvs and compared. Besides the two Chinese Ohv PLA2s with known sequences, eight novel PLA2s were identified from the five Ohv samples and their antiplatelet activities were compared. While two 3FTxs (namely oh-55 and oh-27) were common in all the Ohvs, different sets of 3FTx markers were present in the Chinese and Southeast Asian Ohvs. All the Ohvs contain the Kunitz inhibitor, OH-TCI, while only the Chinese Ohvs contain the inhibitor variant, Oh11-1. Relative to the Chinese Ohvs which contained more phospholipases, the Southeast Asian Ohvs had higher metalloproteinase, acetylcholine esterase, and alkaline phosphatase activities.
    Matched MeSH terms: Disease Models, Animal
  5. Chau SC, Chong PS, Jin H, Tsui KC, Khairuddin S, Tse ACK, et al.
    Int J Mol Sci, 2023 Mar 23;24(7).
    PMID: 37047062 DOI: 10.3390/ijms24076089
    Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment. Although previous study demonstrated the neuroprotective effects of Hericium erinaceus (H.E.), the mechanisms of H.E. treatment on the neuroinflammatory response, neurotransmission, and related metabolites remain largely unknown. We demonstrated that 3-AP rats treated with 25 mg/kg H.E. extracts had improved motor coordination and balance in the accelerated rotarod and rod tests. We showed that the H.E. treatment upregulated the expression of Tgfb1, Tgfb2, and Smad3 genes to levels comparable to those in the non-3-AP control group. Interestingly, we also observed a significant correlation between Tgfb2 gene expression and rod test performance in the 3-AP saline group, but not in the non-3-AP control or H.E.+3-AP groups, indicating a relationship between Tgfb2 gene expression and motor balance in the 3-AP rat model. Additionally, we also found that the H.E. treatment increased mitochondrial COX-IV protein expression and normalized dopamine-serotonin neurotransmission and metabolite levels in the cerebellum of the H.E.+3-AP group compared to the 3-AP saline group. In conclusion, our findings suggest that the H.E. treatment improved motor function in the 3-AP rat model, which was potentially mediated through neuroprotective mechanisms involving TGFB2-Smad3 signaling via normalization of neurotransmission and metabolic pathways.
    Matched MeSH terms: Disease Models, Animal
  6. Chaudhuri JD
    Med Sci Monit, 2000 Sep-Oct;6(5):1031-41.
    PMID: 11208451
    Fetal alcohol syndrome (FAS) is a collection of signs and symptoms seen in some children exposed to alcohol in the prenatal period. It is characterized mainly by physical and mental retardation, craniofacial anomalies and minor joint abnormalities. However, with the increasing incidence of FAS, there is a great variation in the clinical features of FAS. This article describes in detail these clinical features. Due to ethical reasons it is not possible to perform experiments on pregnant women. Hence to study the effects of alcohol, various animal and avian experimental models have been chosen. The various experimental findings and human correlation are described. The exact mechanism by which alcohol induces its teratogenic effects is not known. The possible mechanisms are discussed. Measures to prevent the occurrence of FAS have been suggested.
    Matched MeSH terms: Disease Models, Animal
  7. Che Ahmad Tantowi NA, Lau SF, Mohamed S
    Calcif. Tissue Int., 2018 10;103(4):388-399.
    PMID: 29808374 DOI: 10.1007/s00223-018-0433-1
    Osteoporosis (OP) and osteoarthritis (OA) are debilitating musculoskeletal diseases of the elderly. Ficus deltoidea (FD) or mistletoe fig, a medicinal plant, was pre-clinically evaluated against OP- and OA-related bone alterations, in postmenopausal OA rat model. Thirty twelfth-week-old female rats were divided into groups (n = 6). Four groups were bilateral ovariectomized (OVX) and OA-induced by intra-articular monosodium iodoacetate (MIA) injection into the right knee joints. The Sham control and OVX-OA non-treated groups were given deionized water. The three other OVX-OA groups were orally administered daily with FD extract (200, 400 mg/kg) or diclofenac (5 mg/kg) for 4 weeks. The rats' bones and blood were evaluated for protein and mRNA expressions of osteoporosis and inflammatory indicators, and micro-CT computed tomography for bone microstructure. The non-treated OVX-OA rats developed severe OP bone loss and bone microstructural damage in the subchondral and metaphyseal regions, supported by reduced serum bone formation markers (osteocalcin, osteoprotegerin) and increased bone resorption markers (RANKL and CTX-I). The FD extract significantly (p 
    Matched MeSH terms: Disease Models, Animal
  8. Che Ahmad Tantowi NA, Hussin P, Lau SF, Mohamed S
    Menopause, 2017 Sep;24(9):1071-1080.
    PMID: 28640163 DOI: 10.1097/GME.0000000000000882
    OBJECTIVE: Ficus deltoidea Jack (mistletoe fig) is an ornamental plant found in various parts of the world and used as traditional herbal medicine in some countries. This study investigated the potential use of F deltoidea leaf extract to mitigate osteoarthritis (OA) in ovariectomized (estrogen-deficient postmenopausal model) rats and the mechanisms involved. Diclofenac was used for comparison.

    METHODS: Sprague-Dawley female rats (12 weeks old) were divided randomly into five groups (n = 6): healthy; nontreated OA; OA + diclofenac (5 mg/kg); OA + extract (200 mg/kg); and OA + extract (400 mg/kg). Two weeks after bilaterally ovariectomy, OA was induced by intra-articular injection of monosodium iodoacetate into the right knee joints. After 28 days of treatment, the rats were evaluated for knee OA via physical (radiological and histological observations), biochemical, enzyme-linked immunosorbent assay, and gene expression analysis, for inflammation and cartilage degradation biomarkers.

    RESULTS: The osteoarthritic rats treated with the extract, and diclofenac showed significant reduction of cartilage erosion (via radiological, macroscopic, and histological images) compared with untreated osteoarthritic rats. The elevated serum interleukin-1β, prostaglandin E2, and C-telopeptide type II collagen levels in osteoarthritic rats were significantly reduced by F deltoidea leaf extract comparable to diclofenac. The extract significantly down-regulated the interleukin-1β, prostaglandin E2 receptor, and matrix metalloproteinase-1 mRNA expressions in the osteoarthritic cartilages, similar to diclofenac.

    CONCLUSIONS: F deltoidea leaf extract mitigated postmenopausal osteoarthritic joint destruction by inhibiting inflammation and cartilage degradation enzymes, at an effective extract dose equivalent to about 60 mg/kg for humans. The main bioactive compounds are probably the antioxidative flavonoids vitexin and isovitexin.

    Matched MeSH terms: Disease Models, Animal
  9. Che Has AT
    Behav Brain Res, 2023 Aug 24;452:114551.
    PMID: 37348654 DOI: 10.1016/j.bbr.2023.114551
    Status epilepticus is a neurological disorder that can result in various neuropathological conditions and presentations. Various studies involving animal models have been accomplished to understand and replicating its prominent manifestations including characteristics of related clinical cases. Up to these days, there are variety of methods and techniques to be utilized in inducing this disorder that can be chemically or electrically applied which depending on the experimental designs and targets of the studies. In particular, the chemically induced pilocarpine animal model of status epilepticus is a reliable choice which has evolved for 40 years from its initial discovery back in 1983. Although the development of the model can be considered as a remarkable breakthrough in understanding status epilepticus, several aspects of the model have been improved, throughout the years. Among the major issues in developing this model are the morbidity and mortality rates during induction process. Several modifications have been introduced in the process by different studies to tackle the related problems including application of dose fractionation, adaptation of pilocarpine to lithium-pilocarpine model and utilization of various drugs. Despite all challenges and drawbacks, this model has proven its pertinent and relevance with improvements that have been adapted since it was introduced 40 years ago. In this review, we emphasize on the evolution of this animal model from the beginning until now (1983 - 2023) and the related issues that have made this model still a popular choice in status epilepticus studies.
    Matched MeSH terms: Disease Models, Animal
  10. Cheah HY, Gallon E, Dumoulin F, Hoe SZ, Japundžić-Žigon N, Glumac S, et al.
    Mol Pharm, 2018 07 02;15(7):2594-2605.
    PMID: 29763568 DOI: 10.1021/acs.molpharmaceut.8b00132
    We previously developed a new zinc(II) phthalocyanine (ZnPc) derivative (Pc 1) conjugated to poly-L-glutamic acid (PGA) (1-PG) to address the limitations of ZnPc as part of an antitumor photodynamic therapy approach, which include hydrophobicity, phototoxicity, and nonselectivity in biodistribution and tumor targeting. During this study, we discovered that 1-PG possessed high near-infrared (NIR) light absorptivity (λmax = 675 nm), good singlet oxygen generation efficiency in an aqueous environment, and enhanced photocytotoxic efficacy and cancer cell uptake in vitro. In the current study, we discovered that 1-PG accumulated in 4T1 mouse mammary tumors, with a retention time of up to 48 h. Furthermore, as part of an antitumor PDT, low dose 1-PG (2 mg of Pc 1 equivalent/kg) induced a greater tumor volume reduction (-74 ± 5%) when compared to high dose ZnPc (8 mg/kg, -50 ± 12%). At higher treatment doses (8 mg of Pc 1 equivalent/kg), 1-PG reduced tumor volume maximally (-91 ± 6%) and suppressed tumor size to a minimal level for up to 15 days. The kidney, liver, and lungs of the mice treated with 1-PG (both low and high doses) were free from 4T1 tumor metastasis at the end of the study. Telemetry-spectral-echocardiography studies also revealed that PGA (65 mg/kg) produced insignificant changes to the cardiovascular physiology of Wistar-Kyoto rats when administered in vivo. Results indicate that PGA displays an excellent cardiovascular safety profile, underlining its suitability for application as a nanodrug carrier in vivo. These current findings indicate the potential of 1-PG as a useful photosensitizer candidate for clinical PDT.
    Matched MeSH terms: Disease Models, Animal
  11. Chelliah S, Velappan RD, Lim KT, Swee CWK, Nor Rashid N, Rothan HA, et al.
    Mol Biotechnol, 2020 May;62(5):289-296.
    PMID: 32185600 DOI: 10.1007/s12033-020-00244-0
    Pasteurella multocida is the main cause of haemorrhagic septicaemia (HS) outbreak in livestock, such as cattle and buffaloes. Conventional vaccines such as alum-precipitated or oil-adjuvant broth bacterins were injected subcutaneously to provide protection against HS. However, the immunity developed is only for short term and needed to be administered frequently. In our previous study, a short gene fragment from Pasteurella multocida serotype B was obtained via shotgun cloning technique and later was cloned into bacterial expression system. pQE32-ABA392 was found to possess immunogenic activity towards HS when tested in vivo in rat model. In this study, the targeted gene fragment of ABA392 was sub-cloned into a DNA expression vector pVAX1 and named as pVAX1-ABA392. The new recombinant vaccine was stable and expressed on mammalian cell lines. Serum sample collected from a group of vaccinated rats for ELISA test shows that the antibody in immunized rats was present at high titer and can be tested as a vaccine candidate with challenge in further studies. This successful recombinant vaccine is immunogenic and potentially could be used as vaccine in future against HS.
    Matched MeSH terms: Disease Models, Animal
  12. Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, et al.
    Biomed Pharmacother, 2021 Dec;144:112333.
    PMID: 34678724 DOI: 10.1016/j.biopha.2021.112333
    Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
    Matched MeSH terms: Disease Models, Animal
  13. Chen YB, Lan YW, Chen LG, Huang TT, Choo KB, Cheng WT, et al.
    Cell Stress Chaperones, 2015 Nov;20(6):979-89.
    PMID: 26243699 DOI: 10.1007/s12192-015-0627-7
    Chronic obstructive pulmonary disease (COPD) is a sustained blockage of the airways due to lung inflammation occurring with chronic bronchitis and/or emphysema. Progression of emphysema may be slowed by vascular endothelial growth factor A (VEGFA), which reduces apoptotic tissue depletion. Previously, authors of the present report demonstrated that cis-resveratrol (c-RSV)-induced heat-shock protein 70 (HSP70) promoter-regulated VEGFA expression promoted neovascularization of genetically modified mesenchymal stem cells (HSP-VEGFA-MSC) in a mouse model of ischemic disease. Here, this same stem cell line was evaluated for its protective capacity to alleviate elastase-induced pulmonary emphysema in mice. Results of this study showed that c-RSV-treatment of HSP-VEGFA-MSC exhibited synergy between HSP70 transcription activity and induced expression of anti-oxidant-related genes when challenged by cigarette smoke extracts. Eight weeks after jugular vein injection of HSP-VEGFA-MSC into mice with elastase-induced pulmonary emphysema followed by c-RSV treatment to induce transgene expression, significant improvement was observed in respiratory functions. Expression of VEGFA, endogenous nuclear factor erythroid 2-related factor (Nrf 2), and manganese superoxide dismutase (MnSOD) was significantly increased in the lung tissues of the c-RSV-treated mice. Histopathologic examination of treated mice revealed gradual but significant abatement of emphysema and restoration of airspace volume. In conclusion, the present investigation demonstrates that c-RSV-regulated VEGFA expression in HSP-VEGFA-MSC significantly improved the therapeutic effects on the treatment of COPD in the mouse, possibly avoiding side effects associated with constitutive VEGFA expression.
    Matched MeSH terms: Disease Models, Animal
  14. Cheng HS, Phang SCW, Ton SH, Abdul Kadir K, Tan JBL
    J Food Biochem, 2019 02;43(2):e12717.
    PMID: 31353646 DOI: 10.1111/jfbc.12717
    The present study aimed to outline the physiological and metabolic disparity between chow- and purified ingredient-based high-fat diets and their efficacy in the induction of metabolic syndrome (MetS). Male, 3-week-old Sprague Dawley rats were randomly assigned to chow-based control diet, chow-based high-fat diet, purified control diet, and purified high-fat diet for 12 weeks. Physical and biochemical changes were documented. Chow-based diets, irrespective of the lipid content, resulted in significantly lower weight gain and organ weight compared to purified ingredient-based diets. Circulating insulin, total proteins, albumin, and certain lipid components like the triglycerides, total cholesterol, and high-density lipoprotein-cholesterol were also lower in the chow-based diet groups. Both chow- and purified high-fat diets induced central obesity, hypertension, and hyperglycaemia, but the latter was associated with earlier onset of the metabolic aberrations and additionally, dyslipidaemia. In conclusion, purified high-fat diet is a better diet for MetS induction in rats. PRACTICAL APPLICATIONS: Modeling metabolic syndrome is commonly accomplished with the use of chow- or purified ingredient diets enriched with carbohydrates and/or lipids, but the differences and associated drawbacks are unclear. This study highlights that chow- or modified chow-based diets have a tendency to introduce unwanted metabolic changes which are inconsistent with the progression of metabolic syndrome. Thus, the use of these diets in metabolic disease study should be avoided. On the other hand, purified high-fat diet which can effectively induce the features of metabolic syndrome is highly recommended.
    Matched MeSH terms: Disease Models, Animal
  15. Cheng SH, Ismail A, Anthony J, Ng OC, Hamid AA, Barakatun-Nisak MY
    PMID: 26713097 DOI: 10.1155/2015/405615
    Objectives. Optimizing glycemic control is crucial to prevent type 2 diabetes related complications. Cosmos caudatus is reported to have promising effect in improving plasma blood glucose in an animal model. However, its impact on human remains ambiguous. This study was carried out to evaluate the effectiveness of C. caudatus on glycemic status in patients with type 2 diabetes. Materials and Methods. In this randomized controlled trial with two-arm parallel-group design, a total of 101 subjects with type 2 diabetes were randomly allocated to diabetic-ulam or diabetic controls for eight weeks. Subjects in diabetic-ulam group consumed 15 g of C. caudatus daily for eight weeks while diabetic controls abstained from taking C. caudatus. Both groups received the standard lifestyle advice. Results. After 8 weeks of supplementation, C. caudatus significantly reduced serum insulin (-1.16 versus +3.91), reduced HOMA-IR (-1.09 versus +1.34), and increased QUICKI (+0.05 versus -0.03) in diabetic-ulam group compared with the diabetic controls. HbA1C level was improved although it is not statistically significant (-0.76% versus -0.37%). C. caudatus was safe to consume. Conclusions. C. caudatus supplementation significantly improves insulin resistance and insulin sensitivity in patients with type 2 diabetes.
    Matched MeSH terms: Disease Models, Animal
  16. Cheong AM, Jessica Koh JX, Patrick NO, Tan CP, Nyam KL
    J Food Sci, 2018 Mar;83(3):854-863.
    PMID: 29412455 DOI: 10.1111/1750-3841.14038
    This study aimed to evaluate the effect of kenaf seed oil (KSO), kenaf seed oil-in-water macroemulsion (KSOM), kenaf seed oil-in-water nanoemulsions (KSON), and emulsifier mixtures (EM) on serum lipid profile, liver oxidative status, and histopathological changes in high-cholesterol fed rats. Stability and characteristic of KSOM and KSON were carried out prior to in vivo study. Forty-two Sprague-Dawley rats were divided into 7 groups (6 rats each) and induced hypercholesterolemia by feeding high cholesterol diet (HCD) for 14 days prior to treatments. Different treatments were introduced on day 15 to 29 while supplemented with HCD and removal of HCD during treatment on day 30 to 43, except for HCD group. Body weight and serum lipid profiles were measured at 3 different points: after hypercholesterolemia was induced, on day 29, and at the end of the experiment. Relative liver weight, atherogenic index, coronary risk index, and fecal total bile acids were also determined at the end of experiment. KSON showed significantly higher stability than KSOM and FTIR exhibited good encapsulation of KSO after 1.5 years of storage. Serum total cholesterol, low density lipoprotein cholesterol, lipid peroxidation levels in HCD group without treatment were significantly higher compared to normal control group and all treatment groups. All samples demonstrated hypocholesterolemic effect, but KSON exhibited higher efficiency in cholesterol-lowering properties, weight control and decreased liver fat as confirmed by histopathological evaluation. The overall results revealed that the efficacy of different treatments was in descending order of KSON, KSO, KSOM, and EM.

    PRACTICAL APPLICATION: Kenaf seed oil-in-water nanoemulsion (KSON) has the potential to be used as a natural alternative to the synthetic hypocholesterolemic drug in the future. However, larger sample size and clinical trial are needed to confirm on this potential application. In addition, treatment with KSON was suggested to prevent cardiovascular disease and fatty liver.

    Matched MeSH terms: Disease Models, Animal
  17. Cheong SK, Eow GI, Leong CF
    Malays J Pathol, 2002 Jun;24(1):1-8.
    PMID: 16329549
    Allogeneic bone marrow or peripheral blood stem cell transplantation traditionally uses myeloablative regimen for conditioning to enable grafting of donor's stem cells. Animal experiments have shown that a milder non-myeloablative conditioning regimen does allow engraftment to occur. Nonmyeloablative conditioning regimens are low-intensity immunosuppressive treatment given to the recipient before infusion of donor's stem cells. It was reported to have decreased immediate procedural mortality, in particular those secondary to acute graft versus host reaction. However, it did give rise to higher risks of graft rejection, tumour tolerance and disease progression. Fortunately, appropriately administered donor lymphocyte infusion has been shown to establish full donor chimerism (complete donor stem cell grafting in the recipient's bone marrow) and potentiate antitumour effect (graft versus tumour reaction). The reduction of immediate transplant mortality allows the procedure to be carried out in older age groups, patients with concomitant diseases that otherwise would have made the patients unfit for the procedure, patients with non-malignant disorders such as congenital immune deficiencies, autoimmune disorders or thalassaemia majors. The regimen also allows transplantation of genetically manipulated haemopoietic stem cells (gene thrapy) to be carried out more readily in the immediate future. Lastly, the regimen may serve as a platform for immunotherapy using specific T cell clones for anti-tumour therapy with or without the knowledge of known tumour antigen.
    Matched MeSH terms: Disease Models, Animal
  18. Chew SY, Ho KL, Cheah YK, Ng TS, Sandai D, Brown AJP, et al.
    Sci Rep, 2019 02 26;9(1):2843.
    PMID: 30808979 DOI: 10.1038/s41598-019-39117-1
    The human fungal pathogen Candida glabrata appears to utilise unique stealth, evasion and persistence strategies in subverting the onslaught of host immune response during systemic infection. However, macrophages actively deprive the intracellular fungal pathogen of glucose, and therefore alternative carbon sources probably support the growth and survival of engulfed C. glabrata. The present study aimed to investigate the role of the glyoxylate cycle gene ICL1 in alternative carbon utilisation and its importance for the virulence of C. glabrata. The data showed that disruption of ICL1 rendered C. glabrata unable to utilise acetate, ethanol or oleic acid. In addition, C. glabrata icl1∆ cells displayed significantly reduced biofilm growth in the presence of several alternative carbon sources. It was also found that ICL1 is crucial for the survival of C. glabrata in response to macrophage engulfment. Disruption of ICL1 also conferred a severe attenuation in the virulence of C. glabrata in the mouse model of invasive candidiasis. In conclusion, a functional glyoxylate cycle is essential for C. glabrata to utilise certain alternative carbon sources in vitro and to display full virulence in vivo. This reinforces the view that antifungal drugs that target fungal Icl1 have potential for future therapeutic intervention.
    Matched MeSH terms: Disease Models, Animal
  19. Chew WK, Wah MJ, Ambu S, Segarra I
    Exp Parasitol, 2012 Jan;130(1):22-5.
    PMID: 22027550 DOI: 10.1016/j.exppara.2011.10.004
    Toxoplasma gondii is an intra-cellular parasite that infects humans through vertical and horizontal transmission. The cysts remain dormant in the brain of infected humans and can reactivate in immunocompromised hosts resulting in acute toxoplasmic encephalitis which may be fatal. We determined the onset and progression of brain cysts generation in a mouse model following acute toxoplasmosis as well as the ability of brain cysts to reactivate in vitro. Male Balb/c mice, (uninfected control group, n = 10) were infected orally (study group, n = 50) with 1000 tachyzoites of T. gondii (ME49 strain) and euthanized at 1, 2, 4, 8 and 16 weeks post infection. Brain tissue was harvested, homogenized, stained and the number of brain cysts counted. Aliquots of brain homogenate with cysts were cultured in vitro with confluent Vero cells and the number of cysts and tachyzoites counted after 1 week. Brain cysts but not tachyzoites were detected at week 2 post infection and reached a plateau by week 4. In vitro Vero cells culture showed similar pattern for cysts and tachyzoites and reactivation of cyst in vitro was not influenced by the age of the brain cysts.
    Matched MeSH terms: Disease Models, Animal
  20. Chia JSM, Farouk AAO, Mohamad TAST, Sulaiman MR, Zakaria H, Hassan NI, et al.
    Molecules, 2021 Jun 24;26(13).
    PMID: 34202590 DOI: 10.3390/molecules26133849
    Neuropathic pain is a chronic pain condition persisting past the presence of any noxious stimulus or inflammation. Zerumbone, of the Zingiber zerumbet ginger plant, has exhibited anti-allodynic and antihyperalgesic effects in a neuropathic pain animal model, amongst other pharmacological properties. This study was conducted to further elucidate the mechanisms underlying zerumbone's antineuropathic actions. Research on therapeutic agents involving cannabinoid (CB) and peroxisome proliferator-activated receptors (PPARs) is rising. These receptor systems have shown importance in causing a synergistic effect in suppressing nociceptive processing. Behavioural responses were assessed using the von Frey filament test (mechanical allodynia) and Hargreaves plantar test (thermal hyperalgesia), in chronic constriction injury (CCI) neuropathic pain mice. Antagonists SR141716 (CB1 receptor), SR144528 (CB2 receptor), GW6471 (PPARα receptor) and GW9662 (PPARγ receptor) were pre-administered before the zerumbone treatment. Our findings indicated the involvement of CB1, PPARα and PPARγ in zerumbone's action against mechanical allodynia, whereas only CB1 and PPARα were involved against thermal hyperalgesia. Molecular docking studies also suggest that zerumbone has a comparable and favourable binding affinity against the respective agonist on the CB and PPAR receptors studied. This finding will contribute to advance our knowledge on zerumbone and its significance in treating neuropathic pain.
    Matched MeSH terms: Disease Models, Animal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links