Displaying publications 81 - 100 of 209 in total

Abstract:
Sort:
  1. Yeo CK, Hapizah MN, Khalid BAK, Wan Nazainimoon WM, Khalid Y
    Med J Malaysia, 2004 Jun;59(2):185-9.
    PMID: 15559168
    Diabetes mellitus is an important coronary artery disease risk factor. The presence of microalbuminuria, which indicates renal involvement in diabetic patients, is associated with an increased cardiovascular risk. There are suggestions that diabetic patients with microalbuminuria have more adverse risk profile such as higher ambulatory blood pressure and total cholesterol levels to account for the increased cardiovascular morbidity and mortality. QT dispersion is increasingly being recognized as a prognostic factor for coronary artery disease and sudden death. Some studies have suggested that QT dispersion is an important predictor of mortality in Type II diabetic patients. Our cross sectional study was to compare the QT dispersion and 24 hour ambulatory blood pressure monitoring between diabetic patients with microalbuminuria and those without microalbuminuria. Diabetic patients with overt coronary artery disease were excluded from the study. A total of 108 patients were recruited of which 57 patients had microalbuminuria and 51 were without microalbuminuria. The mean value of QT dispersion was significantly higher in patients with microalbuminuria than in patients without microalbuminuria (58.9 +/- 27.9 ms vs. 47.1 +/- 25.0 ms, p < 0.05). The mean 24 hour systolic and diastolic blood pressures were significantly higher in patients with microalbuminuria than in patients without microalbuminuria (129.5 +/- 12.3 mm Hg vs 122.3 +/- 10.2 mm Hg, p < 0.05 and 78.4 +/- 6.9 mm Hg vs 75.3 +/- 6.8 mm Hg, p < 0.05, respectively). Our study suggests that QT dispersion prolongation, related perhaps to some autonomic dysfunction, is an early manifestation of cardiovascular aberration in diabetic patients with microalbuminuria. The higher blood pressure levels recorded during a 24-hour period min diabetics with microalbuminuria could also possibly account for the worse cardiovascular outcome in this group of patients.
    Matched MeSH terms: Electrocardiography*
  2. Bakar AA, Lim YL, Wilson SJ, Fuentes M, Bertling K, Taimre T, et al.
    Physiol Meas, 2013 Feb;34(2):281-9.
    PMID: 23363933 DOI: 10.1088/0967-3334/34/2/281
    Optical sensing offers an attractive option for detection of surface biopotentials in human subjects where electromagnetically noisy environments exist or safety requirements dictate a high degree of galvanic isolation. Such circumstances may be found in modern magnetic resonance imaging systems for example. The low signal amplitude and high source impedance of typical biopotentials have made optical transduction an uncommon sensing approach. We propose a solution consisting of an electro-optic phase modulator as a transducer, coupled to a vertical-cavity surface-emitting laser and the self-mixing signal detected via a photodiode. This configuration is physically evaluated with respect to synthesized surface electrocardiographic (EKG) signals of varying amplitudes and using differing optical feedback regimes. Optically detected EKG signals using strong optical feedback show the feasibility of this approach and indicate directions for optimization of the electro-optic transducer for improved signal-to-noise ratios. This may provide a new means of biopotential detection suited for environments characterized by harsh electromagnetic interference.
    Matched MeSH terms: Electrocardiography/instrumentation*
  3. Ong ML, Hatle LK, Lai VM, Bosco J
    Int J Clin Pract, 2002 Jun;56(5):345-8.
    PMID: 12137442
    Iron deposition in the heart occurs in beta-thalassaemia major and contributes to cardiac dysfunction. Eighteen patients with beta-thalassaemia major were assessed clinically and had non-invasive investigations. They were young (15.5 +/- 3.6 years). Two patients had clinical heart failure. Doppler echocardiography demonstrated higher transmitral peak flow velocity in early and late diastole compared with controls (e: p<0.05, a: p<0.01). Transtricuspid peak late diastolic flow velocity was higher in patients (p<0.005). Isovolumic relaxation time was shortened (p<0.001). Pulmonary venous flow velocity was higher in diastole than systole (S: 0.51 +/- 0.11 m/s, D: 0.62 +/- 0.08 m/s). Reversal of pulmonary venous flow during atrial systole was seen in eight patients. These diastolic filling abnormalities did not significantly change with blood transfusion. Left ventricular ejection fraction was normal in patients. Two patients had cardiomegaly on chest X-ray. In beta-thalassaemia with iron overload, there is a restrictive pattern of diastolic dysfunction. This is not altered by recent blood transfusion. Left ventricular function remains relatively intact.
    Matched MeSH terms: Electrocardiography/standards
  4. Ahmad S, Valli H, Salvage SC, Grace AA, Jeevaratnam K, Huang CL
    Clin Exp Pharmacol Physiol, 2018 02;45(2):174-186.
    PMID: 28949414 DOI: 10.1111/1440-1681.12863
    Increasing evidence implicates chronic energetic dysfunction in human cardiac arrhythmias. Mitochondrial impairment through Pgc-1β knockout is known to produce a murine arrhythmic phenotype. However, the cumulative effect of this with advancing age and its electrocardiographic basis have not been previously studied. Young (12-16 weeks) and aged (>52 weeks), wild type (WT) (n = 5 and 8) and Pgc-1β-/- (n = 9 and 6), mice were anaesthetised and used for electrocardiographic (ECG) recordings. Time intervals separating successive ECG deflections were analysed for differences between groups before and after β1-adrenergic (intraperitoneal dobutamine 3 mg/kg) challenge. Heart rates before dobutamine challenge were indistinguishable between groups. The Pgc-1β-/- genotype however displayed compromised nodal function in response to adrenergic challenge. This manifested as an impaired heart rate response suggesting a functional defect at the level of the sino-atrial node, and a negative dromotropic response suggesting an atrioventricular conduction defect. Incidences of the latter were most pronounced in the aged Pgc-1β-/- mice. Moreover, Pgc-1β-/- mice displayed electrocardiographic features consistent with the existence of a pro-arrhythmic substrate. Firstly, ventricular activation was prolonged in these mice consistent with slowed action potential conduction and is reported here for the first time. Additionally, Pgc-1β-/- mice had shorter repolarisation intervals. These were likely attributable to altered K+ conductance properties, ultimately resulting in a shortened QTc interval, which is also known to be associated with increased arrhythmic risk. ECG analysis thus yielded electrophysiological findings bearing on potential arrhythmogenicity in intact Pgc-1β-/- systems in widespread cardiac regions.
    Matched MeSH terms: Electrocardiography*
  5. Wong A, Abu Bakar MZ
    Am J Otolaryngol, 2021 01 04;42(2):102869.
    PMID: 33429183 DOI: 10.1016/j.amjoto.2020.102869
    PURPOSE: The nasocardiac reflex is known but not well researched. We aimed to ascertain the electrocardiographic features of the reflex and to chronologically map the heart rhythm dynamics during nasoendoscopy. We also intended to identify variables that could potentially affect the occurrence of this reflex.

    MATERIAL AND METHODS: A prospective, quasi-experimental physiological study. Selected healthy subjects were observed electrocardiographically for 60 s continuously in three equal phases of 20 s each - baseline phase, nasoendoscopic phase, and recovery phase (post-nasoendoscopy). Heart rate fluctuations were charted, followed by identification of a positive nasocardiac reflex group of subjects and a negative group. Analyses against multiple variables were done.

    RESULTS: A total of 53 subjects were analysed. Heart rate during the baseline phase was 81.0 ± 9.9, nasoendoscopic phase was 72.7 ± 10.1, and recovery phase was 75.2 ± 9.6. Sixteen subjects (30.2%) had a positive nasocardiac reflex, and they remained in sinus rhythm with no occurrences of skipped beats, atrioventricular blocks or asystoles. One subject (1.9%) developed temporary ectopic premature ventricular contractions after nasoendoscopy. No variables were found affecting the incidence of a nasocardiac reflex in our study.

    CONCLUSIONS: The pattern of heart rate dynamics was consistent as heart rates drop rapidly upon endoscope insertion and recover in some measure after its withdrawal. Although all our subjects remained asymptomatic, clinicians should not overlook the risks of a severe nasocardiac reflex when performing nasoendoscopy. We recommend that electrical cardiac monitoring be part of the management of vasovagal responses during in-office endonasal procedures.

    Matched MeSH terms: Electrocardiography*
  6. Abdul-Kadir NA, Mat Safri N, Othman MA
    Int J Cardiol, 2016 Nov 01;222:504-8.
    PMID: 27505342 DOI: 10.1016/j.ijcard.2016.07.196
    BACKGROUND: The feasibility study of the natural frequency (ω) obtained from a second-order dynamic system applied to an ECG signal was discovered recently. The heart rate for different ECG signals generates different ω values. The heart rate variability (HRV) and autonomic nervous system (ANS) have an association to represent cardiovascular variations for each individual. This study further analyzed the ω for different ECG signals with HRV for atrial fibrillation classification.

    METHODS: This study used the MIT-BIH Normal Sinus Rhythm (nsrdb) and MIT-BIH Atrial Fibrillation (afdb) databases for healthy human (NSR) and atrial fibrillation patient (N and AF) ECG signals, respectively. The extraction of features was based on the dynamic system concept to determine the ω of the ECG signals. There were 35,031 samples used for classification.

    RESULTS: There were significant differences between the N & NSR, N & AF, and NSR & AF groups as determined by the statistical t-test (p<0.0001). There was a linear separation at 0.4s(-1) for ω of both databases upon using the thresholding method. The feature ω for afdb and nsrdb falls within the high frequency (HF) and above the HF band, respectively. The feature classification between the nsrdb and afdb ECG signals was 96.53% accurate.

    CONCLUSIONS: This study found that features of the ω of atrial fibrillation patients and healthy humans were associated with the frequency analysis of the ANS during parasympathetic activity. The feature ω is significant for different databases, and the classification between afdb and nsrdb was determined.

    Matched MeSH terms: Electrocardiography/classification*
  7. Wickramatilake CM, Mohideen MR, Pathirana C
    Indian Heart J, 2017 02 12;69(2):291.
    PMID: 28460787 DOI: 10.1016/j.ihj.2017.02.002
    Matched MeSH terms: Electrocardiography*
  8. Piccini JP, Stromberg K, Jackson KP, Laager V, Duray GZ, El-Chami M, et al.
    Heart Rhythm, 2017 05;14(5):685-691.
    PMID: 28111349 DOI: 10.1016/j.hrthm.2017.01.026
    BACKGROUND: Device repositioning during Micra leadless pacemaker implantation may be required to achieve optimal pacing thresholds.

    OBJECTIVE: The purpose of this study was to describe the natural history of acute elevated Micra vs traditional transvenous lead thresholds.

    METHODS: Micra study VVI patients with threshold data (at 0.24 ms) at implant (n = 711) were compared with Capture study patients with de novo transvenous leads at 0.4 ms (n = 538). In both cohorts, high thresholds were defined as >1.0 V and very high as >1.5 V. Change in pacing threshold (0-6 months) with high (1.0 to ≤1.5 V) or very high (>1.5 V) thresholds were compared using the Wilcoxon signed-rank test.

    RESULTS: Of the 711 Micra patients, 83 (11.7%) had an implant threshold of >1.0 V at 0.24 ms. Of the 538 Capture patients, 50 (9.3%) had an implant threshold of >1.0 V at 0.40 ms. There were no significant differences in patient characteristics between those with and without an implant threshold of >1.0 V, with the exception of left ventricular ejection fraction in the Capture cohort (high vs low thresholds, 53% vs 58%; P = .011). Patients with an implant threshold of >1.0 V decreased significantly (P < .001) in both cohorts. Micra patients with high and very high thresholds decreased significantly (P < .01) by 1 month, with 87% and 85% having 6-month thresholds lower than the implant value. However, when the capture threshold at implant was >2 V, only 18.2% had a threshold of ≤1 V at 6 months and 45.5% had a capture threshold of >2 V.

    CONCLUSIONS: Pacing thresholds in most Micra patients with elevated thresholds decrease after implant. Micra device repositioning may not be necessary if the pacing threshold is ≤2 V.

    Matched MeSH terms: Electrocardiography*
  9. Iqbal U, Wah TY, Habib Ur Rehman M, Mujtaba G, Imran M, Shoaib M
    J Med Syst, 2018 Nov 05;42(12):252.
    PMID: 30397730 DOI: 10.1007/s10916-018-1107-2
    Electrocardiography (ECG) sensors play a vital role in the Internet of Medical Things, and these sensors help in monitoring the electrical activity of the heart. ECG signal analysis can improve human life in many ways, from diagnosing diseases among cardiac patients to managing the lifestyles of diabetic patients. Abnormalities in heart activities lead to different cardiac diseases and arrhythmia. However, some cardiac diseases, such as myocardial infarction (MI) and atrial fibrillation (Af), require special attention due to their direct impact on human life. The classification of flattened T wave cases of MI in ECG signals and how much of these cases are similar to ST-T changes in MI remain an open issue for researchers. This article presents a novel contribution to classify MI and Af. To this end, we propose a new approach called deep deterministic learning (DDL), which works by combining predefined heart activities with fused datasets. In this research, we used two datasets. The first dataset, Massachusetts Institute of Technology-Beth Israel Hospital, is publicly available, and we exclusively obtained the second dataset from the University of Malaya Medical Center, Kuala Lumpur Malaysia. We first initiated predefined activities on each individual dataset to recognize patterns between the ST-T change and flattened T wave cases and then used the data fusion approach to merge both datasets in a manner that delivers the most accurate pattern recognition results. The proposed DDL approach is a systematic stage-wise methodology that relies on accurate detection of R peaks in ECG signals, time domain features of ECG signals, and fine tune-up of artificial neural networks. The empirical evaluation shows high accuracy (i.e., ≤99.97%) in pattern matching ST-T changes and flattened T waves using the proposed DDL approach. The proposed pattern recognition approach is a significant contribution to the diagnosis of special cases of MI.
    Matched MeSH terms: Electrocardiography/methods*
  10. Sabarudin A, Siong TW, Chin AW, Hoong NK, Karim MKA
    Sci Rep, 2019 03 13;9(1):4374.
    PMID: 30867480 DOI: 10.1038/s41598-019-40758-5
    In this report we have evaluated radiation effective dose received by patients during ECG-gated CCTA examinations based on gender, heart rate, tube voltage protocol and body mass index (BMI). A total of 1,824 patients were retrospectively recruited (1,139 men and 685 women) and they were divided into Group 1 (CCTA with calcium scoring), Group 2 (CCTA without calcium scoring) and Group 3 (only calcium scoring), where the association between gender, heart rate, tube voltage protocol and body mass index (BMI) were analysed. Examinations were performed using a retrospective ECG-gated CCTA protocol and the effective doses were calculated from the dose length product with a conversion coefficient of 0.026 mSv.mGy-1cm-1. No significant differences were observed in the mean effective dose between gender in all groups. The mean estimated dose was significantly higher when the heart rate was lower in Group 1 (p 
    Matched MeSH terms: Electrocardiography*
  11. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al.
    Comput Biol Med, 2017 10 01;89:389-396.
    PMID: 28869899 DOI: 10.1016/j.compbiomed.2017.08.022
    The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats.
    Matched MeSH terms: Electrocardiography*
  12. Hussein AF, Hashim SJ, Aziz AFA, Rokhani FZ, Adnan WAW
    J Med Syst, 2017 Nov 29;42(1):15.
    PMID: 29188389 DOI: 10.1007/s10916-017-0871-8
    The non-stationary and multi-frequency nature of biomedical signal activities makes the use of time-frequency distributions (TFDs) for analysis inevitable. Time-frequency analysis provides simultaneous interpretations in both time and frequency domain enabling comprehensive explanation, presentation and interpretation of electrocardiogram (ECG) signals. The diversity of TFDs and specific properties for each type show the need to determine the best TFD for ECG analysis. In this study, a performance evaluation of five TFDs in term of ECG abnormality detection is presented. The detection criteria based on extracted features from most important ECG signal components (QRS) to detect normal and abnormal cases. This is achieved by estimating its energy concentration magnitude using the TFDs. The TFDs analyse ECG signals in one-minute interval instead of conventional time domain approach that analyses based on beat or frame containing several beats. The MIT-BIH normal sinus rhythm ECG database total records of 18 long-term ECG sampled at 128 Hz have been analysed. The tested TFDs include Dual-Tree Wavelet Transform, Spectrogram, Pseudo Wigner-Ville, Choi-Williams, and Born-Jordan. Each record is divided into one-minute slots, which is not considered previously, and analysed. The sample periods (slots) are randomly selected ten minutes interval for each record. This result with 99.44% detection accuracy for 15,735 ECG beats shows that Choi-Williams distribution is most reliable to be used for heart problem detection especially in automated systems that provide continuous monitoring for long time duration.
    Matched MeSH terms: Electrocardiography/methods*
  13. Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, et al.
    Comput Biol Med, 2018 03 01;94:19-26.
    PMID: 29358103 DOI: 10.1016/j.compbiomed.2017.12.023
    Coronary artery disease (CAD) is the most common cause of heart disease globally. This is because there is no symptom exhibited in its initial phase until the disease progresses to an advanced stage. The electrocardiogram (ECG) is a widely accessible diagnostic tool to diagnose CAD that captures abnormal activity of the heart. However, it lacks diagnostic sensitivity. One reason is that, it is very challenging to visually interpret the ECG signal due to its very low amplitude. Hence, identification of abnormal ECG morphology by clinicians may be prone to error. Thus, it is essential to develop a software which can provide an automated and objective interpretation of the ECG signal. This paper proposes the implementation of long short-term memory (LSTM) network with convolutional neural network (CNN) to automatically diagnose CAD ECG signals accurately. Our proposed deep learning model is able to detect CAD ECG signals with a diagnostic accuracy of 99.85% with blindfold strategy. The developed prototype model is ready to be tested with an appropriate huge database before the clinical usage.
    Matched MeSH terms: Electrocardiography*
  14. Borhanuddin BK, Abdul Latiff H, Mohamed Yusof AK
    Cardiol Young, 2022 Dec;32(12):1994-1998.
    PMID: 35707919 DOI: 10.1017/S1047951122000154
    BACKGROUND: CT is an accepted non-invasive imaging tool to assess the coronary arteries in adults; however, its utilisation in children is limited by high heart rate and lack of standardised protocol. We sought to assess diagnostic quality and factors that affect image quality of CT in assessing coronary artery lesions in Kawasaki patients less than 18 years of age.

    METHODOLOGY: CT coronary angiography was performed on patients with Kawasaki disease diagnosed with coronary aneurysm or suspected to have coronary stenosis. Studies were performed using electrocardiogram-gated protocols. General anaesthesia was used in patients who were not cooperative for breathing control. Heart rate, image quality, and effective radiation dose were documented.

    RESULTS: Fifty-two Kawasaki patients underwent CT coronary angiography to assess coronary artery lesions. Median heart rate was 88 beats per minute (range 50-165 beats/minute). Image quality was graded as excellent in 34 (65%) patients, good in 17 (32%), satisfactory in 1, and poor in 1 patient. Coronary artery aneurysm was found in 25 (bilateral = 6, unilateral = 19, multiple = 11). Thrombus was found in 11 patients resulting in partial and total occlusion in 8 and 3 patients, respectively. Coronary stenosis was noted in 2 patients. The effective radiation dose was 1.296 millisievert (median 0.81 millisievert). Better diagnostic imaging quality was significantly related to lower heart rate (p = 0.007).

    CONCLUSION: Electrocardiogram-triggered CT coronary angiography provides a good diagnostic assessment of coronary artery lesions in children with Kawasaki disease.

    Matched MeSH terms: Electrocardiography/methods
  15. Salman OH, Rasid MF, Saripan MI, Subramaniam SK
    J Med Syst, 2014 Sep;38(9):103.
    PMID: 25047520 DOI: 10.1007/s10916-014-0103-4
    The healthcare industry is streamlining processes to offer more timely and effective services to all patients. Computerized software algorithm and smart devices can streamline the relation between users and doctors by providing more services inside the healthcare telemonitoring systems. This paper proposes a multi-sources framework to support advanced healthcare applications. The proposed framework named Multi Sources Healthcare Architecture (MSHA) considers multi-sources: sensors (ECG, SpO2 and Blood Pressure) and text-based inputs from wireless and pervasive devices of Wireless Body Area Network. The proposed framework is used to improve the healthcare scalability efficiency by enhancing the remote triaging and remote prioritization processes for the patients. The proposed framework is also used to provide intelligent services over telemonitoring healthcare services systems by using data fusion method and prioritization technique. As telemonitoring system consists of three tiers (Sensors/ sources, Base station and Server), the simulation of the MSHA algorithm in the base station is demonstrated in this paper. The achievement of a high level of accuracy in the prioritization and triaging patients remotely, is set to be our main goal. Meanwhile, the role of multi sources data fusion in the telemonitoring healthcare services systems has been demonstrated. In addition to that, we discuss how the proposed framework can be applied in a healthcare telemonitoring scenario. Simulation results, for different symptoms relate to different emergency levels of heart chronic diseases, demonstrate the superiority of our algorithm compared with conventional algorithms in terms of classify and prioritize the patients remotely.
    Matched MeSH terms: Electrocardiography
  16. Ismail AK, Weinstein SA, Auliya M, Appareo P
    Clin Toxicol (Phila), 2012 Jul;50(6):518-21.
    PMID: 22702902 DOI: 10.3109/15563650.2012.696119
    Envenoming by some species of cobras (Naja species) may include cardiotoxic effects including various dysrhythmias. However, dysrhythmias leading specifically to ventricular bigeminy have not been previously documented. We report a case of cardiotoxicity and the development of ventricular bigeminy following a cobra envenomation.
    Matched MeSH terms: Electrocardiography
  17. Zuhdi AS, Yaakob ZH, Sadiq MA, Ismail MD, Undok AW, Ahmad WA
    Medicina (Kaunas), 2011;47(4):219-21.
    PMID: 21829054
    Takotsubo cardiomyopathy is a rare, acute, nonischemic cardiomyopathy causing transient left ventricular dysfunction, which can mimic myocardial infarction on its presentation. While many cardiac manifestations have been associated with hyperthyroidism, we report a rare case where it has precipitated takotsubo cardiomyopathy.
    Matched MeSH terms: Electrocardiography
  18. Azarisman SM, Magdi YA, Noorfaizan S, Oteh M
    N Engl J Med, 2007 Nov 1;357(18):1873-4.
    PMID: 17978302 DOI: 10.1056/NEJMc070990
    Matched MeSH terms: Electrocardiography
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links