Displaying publications 81 - 100 of 104 in total

Abstract:
Sort:
  1. Rahman INA, Attan N, Mahat NA, Jamalis J, Abdul Keyon AS, Kurniawan C, et al.
    Int J Biol Macromol, 2018 Aug;115:680-695.
    PMID: 29698760 DOI: 10.1016/j.ijbiomac.2018.04.111
    The chemical-catalyzed transesterification process to produce biofuels i.e. pentyl valerate (PeVa) is environmentally unfriendly, energy-intensive with tedious downstream treatment. The present work reports the use of Rhizomucor miehei lipase (RML) crosslinked onto magnetic chitosan/chitin nanoparticles (RML-CS/CH/MNPs). The approach used to immobilize RML onto the CS/CH/MNPs yielded RML-CS/CH/MNPs with an immobilized protein loading and specific activity of 7.6 mg/g and 5.0 U·g-1, respectively. This was confirmed by assessing data of field emission scanning electron microscopy, X-ray diffraction, thermal gravimetric analysis and Fourier transform infrared spectroscopy. A three-level-four-factor Box-Behnken design (incubation time, temperature, substrate molar ratio, and enzyme loading) was used to optimize the RML-CS/CH/MNP-catalyzed esterification synthesis of PeVa. Under optimum condition, the maximum yield of PeVa (97.8%) can be achieved in 5 h at 50 °C using molar ratio valeric acid:pentanol (1:2) and an enzyme load of 2 mg/mL. Consequently, operational stability experiments showed that the protocol adopted to prepare the CS/CH/MNP nanoparticles had increased the durability of RML. The RML-CS/CH/MNP could catalyze up to eight successive esterification cycles to produce PeVa. The study also demonstrated the functionality of CS/CH/MNP nanoparticles as an eco-friendly support matrix for improving enzymatic activity and operational stability of RML to produce PeVa.
    Matched MeSH terms: Enzymes, Immobilized/metabolism; Enzymes, Immobilized/chemistry
  2. Abdul Manan FM, Attan N, Widodo N, Aboul-Enein HY, Wahab RA
    Prep Biochem Biotechnol, 2018 Jan 02;48(1):92-102.
    PMID: 29194017 DOI: 10.1080/10826068.2017.1405021
    An alternative environmentally benign support was prepared from chitosan-chitin nanowhiskers (CS/CNWs) for covalent immobilization of Rhizomucor miehei lipase (RML) to increase the operational stability and recyclability of RML in synthesizing eugenyl benzoate. The CS/CNWs support and RML-CS/CNWs were characterized using X-ray diffraction, fluorescent microscopy, and Fourier transform infrared spectroscopy. Efficiency of the RML-CS/CNWs was compared to the free RML to synthesize eugenyl benzoate for parameters: reaction temperature, stirring rate, reusability, and thermal stability. Under optimal experimental conditions (50°C, 250 rpm, catalyst loading 3 mg/mL), a twofold increase in yield of eugenyl benzoate was observed for RML-CS/CNWs as compared to free RML, with the former achieving maximum yield of the ester at 62.1% after 5 hr. Results demonstrated that the strategy adopted to prepare RML-CS/CNWs was useful, producing an improved and prospectively greener biocatalyst that supported a sustainable process to prepare eugenyl benzoate. Moreover, RML-CS/CNWs are biodegradable and perform esterification reactions under ambient conditions as compared to the less eco-friendly conventional acid catalyst. This research provides a facile and promising approach for improving activity of RML in which the resultant RML-CS/CNWs demonstrated good operational stability for up to eight successive esterification cycles to synthesize eugenyl benzoate.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*; Enzymes, Immobilized/chemistry
  3. Wan Elina Faradilla Wan Khalid, Lee YH, Mohamad Nasir Mat Arip
    Sains Malaysiana, 2018;47:941-949.
    Cellulose nanomaterial with rod-like structure and highly crystalline order, usually formed by elimination of the amorphous region from cellulose during acid hydrolysis. Cellulose nanomaterial with the property of biocompatibility and nontoxicity can be used for enzyme immobilization. In this work, urease enzyme was used as a model enzyme to study the surface modification of cellulose nanomaterial and its potential for biosensor application. The cellulose nanocrystal (CNC) surface was modified using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation to introduce the carboxyl group at C6 primary alcohol. The success of enzyme immobilization and surface modification was confirmed using chemical tests and measured using UV-Visible spectrophotometer. The immobilization strategy was then applied for biosensor application for urea detection. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were used for electroanalytical characterization of the urea biosensor.
    Matched MeSH terms: Enzymes, Immobilized
  4. Raja Jamaluddin RZA, Yook Heng L, Tan LL, Chong KF
    Sensors (Basel), 2018 Apr 26;18(5).
    PMID: 29701688 DOI: 10.3390/s18051343
    A new biosensor for the analysis of nitrite in food was developed based on hemoglobin (Hb) covalently immobilized on the succinimide functionalized poly(n-butyl acrylate)-graphene [poly(nBA)-rGO] composite film deposited on a carbon-paste screen-printed electrode (SPE). The immobilized Hb on the poly(nBA)-rGO conducting matrix exhibited electrocatalytic ability for the reduction of nitrite with significant enhancement in the reduction peak at −0.6 V versus Ag/AgCl reference electrode. Thus, direct determination of nitrite can be achieved by monitoring the cathodic peak current signal of the proposed polyacrylic-graphene hybrid film-based voltammetric nitrite biosensor. The nitrite biosensor exhibited a reproducible dynamic linear response range from 0.05⁻5 mg L−1 nitrite and a detection limit of 0.03 mg L−1. No significant interference was observed by potential interfering ions such as Ca2+, Na⁺, K⁺, NH₄⁺, Mg2+, and NO₃− ions. Analysis of nitrite in both raw and processed edible bird’s nest (EBN) samples demonstrated recovery of close to 100%. The covalent immobilization of Hb on poly(nBA)-rGO composite film has improved the performance of the electrochemical nitrite biosensor in terms of broader detection range, lower detection limit, and prolonged biosensor stability.
    Matched MeSH terms: Enzymes, Immobilized
  5. Lian W, Li D, Zhang L, Wang W, Faiza M, Tan CP, et al.
    Enzyme Microb Technol, 2018 Oct;117:56-63.
    PMID: 30037552 DOI: 10.1016/j.enzmictec.2018.06.007
    Conjugated linoleic acid (CLA)-rich triacylglycerols (TAG) have received significant attention owing to their health promoting properties. In this study, CLA-rich TAG were successfully synthesized by an immobilized mutant lipase (MAS1-H108A)-catalyzed esterification of CLA-rich fatty acids and glycerol under vacuum. MAS1-H108A was first immobilized onto ECR1030 resin. Results showed that the lipase/support ratio of 41 mg/g was suitable for the immobilization and the thermostability of immobilized MAS1-H108A was greatly enhanced. Subsequently, the immobilized MAS1-H108A was employed for the synthesis of CLA-rich TAG and 95.21% TAG with 69.19% CLA was obtained under the optimized conditions. The TAG content (95.21%) obtained by immobilized MAS1-H108A is the reported highest value thus far, which was significantly higher than that (9.26%) obtained by Novozym 435 under the same conditions. Although the TAG content comparable to the results obtained in this study could also be obtained by Novozym 435, the used enzyme amount is approximately 5-fold of the immobilized MAS1-H108A. Additionally, the immobilized MAS1-H108A exhibited excellent recyclability during esterification retaining 95.11% of its initial activity after 10 batches. Overall, such immobilized mutant lipase with superior esterification activity and recyclability has the potential to be used in oils and fats industry.
    Matched MeSH terms: Enzymes, Immobilized/genetics; Enzymes, Immobilized/metabolism*; Enzymes, Immobilized/chemistry
  6. Sayyed RZ, Bhamare HM, Sapna, Marraiki N, Elgorban AM, Syed A, et al.
    PLoS One, 2020;15(6):e0229968.
    PMID: 32497077 DOI: 10.1371/journal.pone.0229968
    Although laccase has been recognized as a wonder molecule and green enzyme, the use of low yielding fungal strains, poor production, purification, and low enzyme kinetics have hampered its large-scale application. Thus,this study aims to select high yielding fungal strains and optimize the production, purification, and kinetics of laccase of Aspergillus sp. HB_RZ4. The results obtained indicated that Aspergillus sp. HB_RZ4 produced a significantly large amount of laccase under meso-acidophilic shaking conditions in a medium containing glucose and yeast extract. A 25 μM CuSO4 was observed to enhance the enzyme yield. The enzyme was best purified on a Sephadex G-100 column. The purified enzyme resembled laccase of A. flavus. The kinetics of the purified enzyme revealed high substrate specificity and good velocity of reaction,using ABTS as a substrate. The enzyme was observed to be stable over various pH values and temperatures. The peptide structure of the purified enzyme was found to resemble laccase of A. kawachii IFO 4308. The fungus was observed to decolorize various dyes independent of the requirement of a laccase mediator system.Aspergillus sp. HB_RZ4 was observed to be a potent natural producer of laccase, and it decolorized the dyes even in the absence of a laccase mediator system. Thus, it can be used for bioremediation of effluent that contains non-textile dyes.
    Matched MeSH terms: Enzymes, Immobilized/antagonists & inhibitors; Enzymes, Immobilized/metabolism; Enzymes, Immobilized/chemistry
  7. Bilal M, Lam SS, Iqbal HMN
    Environ Pollut, 2022 Jan 15;293:118582.
    PMID: 34856243 DOI: 10.1016/j.envpol.2021.118582
    The discharge of an alarming number of recalcitrant pollutants from various industrial activities presents a serious threat to environmental sustainability and ecological integrity. Bioremediation has gained immense interest around the world due to its environmentally friendly and cost-effective nature. In contrast to physical and chemical methods, the use of microbial enzymes, particularly immobilized biocatalysts, has been demonstrated as a versatile approach for the sustainable mitigation of environmental pollution. Considerable attention is now devoted to developing novel enzyme engineering approaches and state-of-the-art bioreactor design for ameliorating the overall bio-catalysis and biodegradation performance of enzymes. This review discusses the contemporary and state of the art technical and scientific progress regarding applying oxidoreductase enzyme-based biocatalytic systems to remediate a vast number of pharmaceutically active compounds from water and wastewater bodies. A comprehensive insight into enzyme immobilization, the role of mediators, bioreactors designing, and transformation products of pharmaceuticals and their associated toxicity is provided. Additional studies are necessary to elucidate enzymatic degradation mechanisms, monitor the toxicity levels of the resulting degraded metabolites and optimize the entire bio-treatment strategy for technical and economical affordability.
    Matched MeSH terms: Enzymes, Immobilized
  8. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A
    Appl Biochem Biotechnol, 2015 Feb;175(4):1817-42.
    PMID: 25427594 DOI: 10.1007/s12010-014-1417-x
    Nanobiocatalysis is a new frontier of emerging nanosized material support in enzyme immobilization application. This paper is about a comprehensive review on cellulose nanofibers (CNF), including their structure, surface modification, chemical coupling for enzyme immobilization, and potential applications. The CNF surface consists of mainly -OH functional group that can be directly interacted weakly with enzyme, and its binding can be improved by surface modification and interaction of chemical coupling that forms a strong and stable covalent immobilization of enzyme. The knowledge of covalent interaction for enzyme immobilization is important to provide more efficient interaction between CNF support and enzyme molecule. Enzyme immobilization onto CNF is having potential for improving enzymatic performance and production yield, as well as contributing toward green technology and sustainable sources.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  9. Khor GK, Sim JH, Kamaruddin AH, Uzir MH
    Bioresour Technol, 2010 Aug;101(16):6558-61.
    PMID: 20363621 DOI: 10.1016/j.biortech.2010.03.047
    In order to characterize enzyme activity and stability corresponding to temperature effects, thermodynamic studies on commercial immobilized lipase have been carried out via enzymatic transesterification. An optimum temperature of 40 degrees C was obtained in the reaction. The decreasing reaction rates beyond the optimum temperature indicated the occurrence of reversible enzyme deactivation. Thermodynamic studies on lipase denaturation exhibited a first-order kinetics pattern, with considerable stability through time shown by the lipase as well. The activation and deactivation energies were 22.15 kJ mol(-1) and 45.18 kJ mol(-1), respectively, implying more energy was required for the irreversible denaturation of the enzyme to occur. At water content of 0.42%, the initial reaction rate and FAME yield displayed optimum values of 3.317 g/L min and 98%, respectively.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  10. Rahman MB, Basri M, Hussein MZ, Rahman RN, Zainol DH, Salleh AB
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):313-20.
    PMID: 15304759
    Synthesis of layered double hydroxides (LDHs) of Zn/Al-NO3- hydrotalcite (HIZAN) and Zn/Al-diocytyl sodium sulfosuccinate (DSS) nanocomposite (NAZAD) with a molar ratio of Zn/Al of 4:1 were carried out by coprecipitation through continuous agitation. Their structures were determined using X-ray diffractometer spectra, which showed that basal spacing for LDH synthesized by both methods was about 8.89 A. An expansion of layered structure of about 27.9 A was observed to accommodate the surfactant anion between the interlayer. This phenomenon showed that the intercalation process took place between the LDH interlayer. Lipase from Candida rugosa was immobilized onto these materials by physical adsorption method. It was found that the protein loading onto NAZAD is higher than HIZAN. The activity of immobilized lipase was investigated through esterification of oleic acid and 1-butanol in hexane. The effects of pore size, surface area, reaction temperature, thermostability of the immobilized lipases, storage stability in organic solvent, and leaching studies were investigated. Stability was found to be the highest in the nanocomposite NAZAD.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  11. Esa NM, Yunus WM, Ahmad MB, Basri M, Razak CN, Salleh AB
    Ann N Y Acad Sci, 1998 Dec 13;864:489-92.
    PMID: 9928130
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  12. Ampon K
    J Chem Technol Biotechnol, 1992;55(2):185-90.
    PMID: 1384564
    Trypsin has been immobilized by adsorption onto Amberlite XAD-7 beads. The Michaelis constant (Km) of the enzyme was increased about sevenfold following the immobilization. Its rate of penetration into the porous beads was determined by staining the beads, which had been split, with naphthol blue black. The extent of diffusional rate limitation of immobilized trypsin was related to the penetration depth of the enzyme into the beads. This can be controlled by manipulating the conditions during the preparation of the immobilized enzyme.
    Matched MeSH terms: Enzymes, Immobilized*
  13. Abdul Rahman MB, Jarmi NI, Chaibakhsh N, Basri M
    J Ind Microbiol Biotechnol, 2011 Jan;38(1):229-34.
    PMID: 20803246 DOI: 10.1007/s10295-010-0817-3
    Esterification of succinic acid with oleyl alcohol catalyzed by immobilized Candida antarctica lipase B (Novozym 435) was investigated in this study. Response surface methodology (RSM) based on a five-level, four-variable central composite design (CCD) was used to model and analyze the reaction. A total of 21 experiments representing different combinations of the four parameters including temperature (35-65°C), time (30-450 min), enzyme amount (20-400 mg), and alcohol:acid molar ratio (1:1-8:1) were generated. A partial cubic equation could accurately model the response surface with a R(2) of 0.9853. The effect and interactions of the variables on the ester synthesis were also studied. Temperature was found to be the most significant parameter that influenced the succinate ester synthesis. At the optimal conditions of 41.1°C, 272.8 min, 20 mg enzyme amount and 7.8:1 alcohol:acid molar ratio, the esterification percentage was 85.0%. The model can present a rapid means for estimating the conversion yield of succinate ester within the selected ranges.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  14. Jacob AG, Wahab RA, Mahat NA
    Enzyme Microb Technol, 2021 Aug;148:109807.
    PMID: 34116744 DOI: 10.1016/j.enzmictec.2021.109807
    Oil palm leaves (OPL) silica (SiO2) can replace the energy-intensive, commercially produced SiO2. Moreover, the agronomically sourced biogenic SiO2 is more biocompatible and cost-effective enzyme support, which properties could be improved by the addition of magnetite (Fe3O4) and graphene oxide (GO) to yield better ternary support to immobilize enzymes, i.e., Candida rugosa lipase (CRL). This study aimed to optimize the Candida rugosa lipase (CRL immobilization onto the ternary OPL-silica-magnetite (Fe3O4)-GO (SiO2/Fe3O4/GO) support, for use as biocatalyst for ethyl valerate (EV) production. Notably, this is the first study detailing the CRL/SiO2/Fe3O4/GO biocatalyst preparation for rapid and high yield production of ethyl valerate (EV). AFM and FESEM micrographs revealed globules of CRL covalently bound to GL-A-SiO2/Fe3O4/GO; similar to Raman and UV-spectroscopy results. FTIR spectra revealed amide bonds at 3478 cm-1 and 1640 cm-1 from covalent interactions between CRL and GL-A-SiO2/Fe3O4/GO. Optimum immobilization conditions were 4% (v/v) glutaraldehyde, 8 mg/mL CRL, at 16 h stirring in 150 mM NaCl at 30 °C, offering 24.78 ± 0.26 mg/g protein (specific activity = 65.24 ± 0.88 U/g). The CRL/SiO2/Fe3O4/GO yielded 77.43 ± 1.04 % of EV compared to free CRL (48.75 ± 0.70 %), verifying the suitability of SiO2/Fe3O4/GO to hyperactivate and stabilize CRL for satisfactory EV production.
    Matched MeSH terms: Enzymes, Immobilized/metabolism
  15. Sukri SSM, Mimi Sakinah AM
    Appl Biochem Biotechnol, 2018 Jan;184(1):278-290.
    PMID: 28676961 DOI: 10.1007/s12010-017-2542-0
    The present study explores the utilisation of a new raw material from lignocellulose biomass, Meranti wood sawdust (MWS) for high commercial value xylooligosaccharides (XOS) production using immobilised xylanase. The xylanase was immobilised by a combination of entrapment and covalent binding techniques. The hemicellulosic xylan from MWS was extracted using a standard chlorite delignification method. The production of total and derivatives of XOS from the degradation of the hemicellulosic xylan of MWS were compared to the production from the commercial xylan from Beechwood. The utilisation of the extracted xylan from MWS yielded 0.36 mg/mL of total XOS after 60 h of hydrolysis. During the hydrolysis reaction, the immobilised xylanase released a lower degree of polymerisation (DP) of XOS, mainly X2 and X3, which were the major products of xylan degradation by xylanase enzymes. The production of XOS with a lower DP from MWS demonstrated the biotechnological potential of the MWS in the future. The XOS production retained about 70% of its initial XOS production during the second cycle. This is also the first report on the utilisation of MWS wastes in enzymatic hydrolysis using immobilised xylanase for XOS production.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  16. Lian W, Wang W, Tan CP, Wang J, Wang Y
    Bioprocess Biosyst Eng, 2019 Feb;42(2):321-329.
    PMID: 30421172 DOI: 10.1007/s00449-018-2036-7
    LML-type structured lipids are one type of medium- and long-chain triacylglycerols. LML was synthesized using immobilized Talaromyces thermophilus lipase (TTL)-catalyzed interesterification of tricaprylin and ethyl linoleate. The resin AB-8 was chosen, and the lipase/support ratio was determined to be 60 mg/g. Subsequently, the immobilized TTL with strict sn-1,3 regiospecificity was applied to synthesize LML. Under the optimized conditions (60 °C, reaction time 6 h, enzyme loading of 6% of the total weight of substrates, substrate of molar ratio of ethyl linoleate to tricaprylin of 6:1), Triacylglycerols with two long- and one medium-chain FAs (DL-TAG) content as high as 52.86 mol% was obtained. Scale-up reaction further verified the industrial potential of the established process. The final product contained 85.24 mol% DL-TAG of which 97 mol% was LML after purification. The final product obtained with the high LML content would have substantial potential to be used as functional oils.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  17. Chan YW, Acquah C, Obeng EM, Dullah EC, Jeevanandam J, Ongkudon CM
    Biochimie, 2019 Feb;157:204-212.
    PMID: 30513369 DOI: 10.1016/j.biochi.2018.11.019
    Biocarriers are pivotal in enhancing the reusability of biocatalyst that would otherwise be less economical for industrial application. Ever since the induction of enzymatic technology, varied materials have been assessed for their biocompatibility with enzymes of distinct functionalities. Herein, cellulase was immobilized onto polymethacrylate particles (ICP) as the biocarrier grafted with ethylenediamine (EDA) and glutaraldehyde (GA). Carboxymethyl cellulose (CMC) was used as a model substrate for activity assay. Enzyme immobilization loading was determined by quantifying the dry weight differential of ICP (pre-& post-immobilization). Cellulase was successfully demonstrated to be anchored upon ICP and validated by FTIR spectra analysis. The optimal condition for cellulase immobilization was determined to be pH 6 at 20 °C. The maximum CMCase activity was achieved at pH 5 and 50 °C. Residual activity of ∼50% was retained after three iterations and dipped to ∼18% on following cycle. Also, ICP displayed superior pH adaptability as compared to free cellulase. The specific activity of ICP was 65.14 ± 1.11% relative to similar amount of free cellulase.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  18. Wafti NSA, Yunus R, Lau HLN, Yaw TCS, Aziz SA
    Bioprocess Biosyst Eng, 2021 Nov;44(11):2429-2444.
    PMID: 34269888 DOI: 10.1007/s00449-021-02615-6
    The present study reports the effects of three commercial immobilized lipases namely Novozyme 435 from Candida antarctica lipase B (CALB), Lipozyme TL IM from Thermomyces lanuginosus and Lipozyme RM IM from Rhizomucor miehei on the production of trimethylolpropane (TMP) ester from high oleic palm methyl ester (HO-PME) and TMP. The TMP ester is a promising base oil for biolubricants that are easily biodegradable and non-toxic to humans and the environment. Enzymatic catalysts are insensitive to free fatty acid (FFA) content, hence able to mitigate the side reactions and consequently reduce product separation cost. The potential of these enzymes to produce TMP ester in a solvent-free medium was screened at various reaction time (8, 23, 30 and 48 h), operating pressure (0.1, 0.3 and 1.0 mbar) and enzyme dosage (1, 3, 5 and 10% w/w). The reaction was conducted at a constant temperature of 70 °C and a molar ratio of 3.9:1 (HO-PME: TMP). Novozyme 435 produced the highest yield of TMP ester of 95.68 ± 3.60% under the following conditions: 23 h reaction time, 0.1 mbar operating pressure and 5% w/w of enzyme dosage. The key lubrication properties of the produced TMP ester are viscosity index (208 ± 2), pour point (- 30 ± - 2 °C), cloud point (- 15 ± - 2 °C), onset thermal degradation temperature (427.8 °C), and oxidation stability, RPVOT (42 ± 4 min). The properties of the TMP ester produced from the enzymatic transesterification are comparable to other vegetable oil-based biolubricants produced by chemical transesterification.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  19. Jailani N, Jaafar NR, Rahman RA, Illias RM
    Enzyme Microb Technol, 2023 Sep;169:110283.
    PMID: 37433237 DOI: 10.1016/j.enzmictec.2023.110283
    One of the potentials of carrier-free cross-linked enzyme aggregates (CLEA) immobilization is the ability to be separated and reuse. Yet, it might be impeded by the poor mechanical stability resulting low recyclability. CLEA of CGTase from Bacillus lehensis G1 (CGTase G1-CLEA) using chitosan (CS) as a cross-linker demonstrated high activity recovery however, displayed poor reusability. Therefore, the relationship between mechanical strength and reusability is studied by enhancing the CS mechanical properties and applying a new co-aggregation approach. Herein, CS was chemically cross-linked with glutaraldehyde (GA) and GA was introduced as a co-aggregant (coGA). CGTase G1-CLEA developed using an improved synthesized chitosan-glutaraldehyde (CSGA) cross-linker and a new coGA technique showed to increase its mechanical stability which retained 63.4% and 52.2%, respectively compared to using CS that remained 33.1% of their initial activity after stirred at 500 rpm. The addition of GA impacted the morphology and interaction consequently stabilizing the CLEAs durability in production of cyclodextrins. As a result, the reusability of CGTase G1-CLEA with CSGA and coGA increased by 56.6% and 42.8%, respectively compared to previous CLEA after 5 cycles for 2 h of reaction. This verifies that the mechanical strength of immobilized enzyme influences the improvement of its operational stability.
    Matched MeSH terms: Enzymes, Immobilized/metabolism
  20. Kahar UM, Sani MH, Chan KG, Goh KM
    Molecules, 2016 Sep 09;21(9).
    PMID: 27618002 DOI: 10.3390/molecules21091196
    α-Amylase from Anoxybacillus sp. SK3-4 (ASKA) is a thermostable enzyme that produces a high level of maltose from starches. A truncated ASKA (TASKA) variant with improved expression and purification efficiency was characterized in an earlier study. In this work, TASKA was purified and immobilized through covalent attachment on three epoxide (ReliZyme EP403/M, Immobead IB-150P, and Immobead IB-150A) and an amino-epoxide (ReliZyme HFA403/M) activated supports. Several parameters affecting immobilization were analyzed, including the pH, temperature, and quantity (mg) of enzyme added per gram of support. The influence of the carrier surface properties, pore sizes, and lengths of spacer arms (functional groups) on biocatalyst performances were studied. Free and immobilized TASKAs were stable at pH 6.0-9.0 and active at pH 8.0. The enzyme showed optimal activity and considerable stability at 60 °C. Immobilized TASKA retained 50% of its initial activity after 5-12 cycles of reuse. Upon degradation of starches and amylose, only immobilized TASKA on ReliZyme HFA403/M has comparable hydrolytic ability with the free enzyme. To the best of our knowledge, this is the first report of an immobilization study of an α-amylase from Anoxybacillus spp. and the first report of α-amylase immobilization using ReliZyme and Immobeads as supports.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links