Displaying publications 81 - 100 of 1634 in total

Abstract:
Sort:
  1. Reza Etemadi M, Ling KH, Zainal Abidin S, Chee HY, Sekawi Z
    PLoS One, 2017;12(5):e0176947.
    PMID: 28558071 DOI: 10.1371/journal.pone.0176947
    Human rhinovirus (HRV) is the common virus that causes acute respiratory infection (ARI) and is frequently associated with lower respiratory tract infections (LRTIs). We aimed to investigate whether HRV infection induces a specific gene expression pattern in airway epithelial cells. Alveolar epithelial cell monolayers were infected with HRV species B (HRV-B). RNA was extracted from both supernatants and infected monolayer cells at 6, 12, 24 and 48 hours post infection (hpi) and transcriptional profile was analyzed using Affymetrix GeneChip and the results were subsequently validated using quantitative Real-time PCR method. HRV-B infects alveolar epithelial cells which supports implication of the virus with LRTIs. In total 991 genes were found differentially expressed during the course of infection. Of these, 459 genes were up-regulated whereas 532 genes were down-regulated. Differential gene expression at 6 hpi (187 genes up-regulated vs. 156 down-regulated) were significantly represented by gene ontologies related to the chemokines and inflammatory molecules indicating characteristic of viral infection. The 75 up-regulated genes surpassed the down-regulated genes (35) at 12 hpi and their enriched ontologies fell into discrete functional entities such as regulation of apoptosis, anti-apoptosis, and wound healing. At later time points of 24 and 48 hpi, predominated down-regulated genes were enriched for extracellular matrix proteins and airway remodeling events. Our data provides a comprehensive image of host response to HRV infection. The study suggests the underlying molecular regulatory networks genes which might be involved in pathogenicity of the HRV-B and potential targets for further validations and development of effective treatment.
    Matched MeSH terms: Gene Expression Profiling*
  2. Chin KCJ, Taylor TD, Hebrard M, Anbalagan K, Dashti MG, Phua KK
    BMC Genomics, 2017 Oct 31;18(1):836.
    PMID: 29089020 DOI: 10.1186/s12864-017-4212-6
    BACKGROUND: Typhoid fever is an acute systemic infection of humans caused by Salmonella enterica subspecies enterica serovar Typhi (S. Typhi). In chronic carriers, the bacteria survive the harsh environment of the gallbladder by producing biofilm. The phenotype of S. Typhi biofilm cells is significantly different from the free-swimming planktonic cells, and studies have shown that they are associated with antibiotic resistance, immune system evasion, and bacterial persistence. However, the mechanism of this transition and the events leading to biofilm formation are unknown. High throughput sequencing was performed to identify the genes involved in biofilm formation and to postulate the mechanism of action.

    RESULTS: Planktonic S. Typhi cells were cultured using standard nutrient broth whereas biofilm cells were cultured in a stressful environment using high shearing-force and bile to mimic the gallbladder. Sequencing libraries were prepared from S. Typhi planktonic cells and mature biofilm cells using the Illumina HiSeq 2500 platform, and the transcriptome data obtained were processed using Cufflinks bioinformatics suite of programs to investigate differential gene expression between the two phenotypes. A total of 35 up-regulated and 29 down-regulated genes were identified. The identities of the differentially expressed genes were confirmed using NCBI BLAST and their functions were analyzed. The results showed that the genes associated with metabolic processes and biofilm regulations were down-regulated while those associated with the membrane matrix and antibiotic resistance were highly up-regulated.

    CONCLUSIONS: It is proposed that the biofilm phenotype of S. Typhi allows the bacteria to increase production of the membrane matrix in order to serve as a physical shield and to adhere to surfaces, and enter an energy conservation state in response to the stressful environment. Conversely, the planktonic phenotype allows the bacteria to produce flagella and increase metabolic activity to enable the bacteria to migrate and form new colonies of infection. This data provide a basis for further studies to uncover the mechanism of biofilm formation in S. Typhi and to discover novel genes or pathways associated with the development of the typhoid carrier state.

    Matched MeSH terms: Gene Expression Regulation, Bacterial*
  3. Sim EU, Ng KL, Lee CW, Narayanan K
    Biomed Res Int, 2017;2017:4876954.
    PMID: 28791303 DOI: 10.1155/2017/4876954
    The association of ribosomal proteins with carcinogenesis of nasopharyngeal carcinoma (NPC) has been established in a limited subset of ribosomal protein genes. To date, three ribosomal protein genes, eL27 (L27), eL41 (L41), and eL43 (L37a), have been found to be differentially expressed in cell lines derived from NPC tumors. This raises the possibility of more ribosomal protein genes that could be associated with NPC. In this study, we investigated the expression profiles of eight ribosomal protein genes, uS8 (S8), uS4 (S9), eS31 (S27a), eL6 (L6), eL18 (L18), uL14 (L23), eL24 (L24), and eL30 (L30), in six NPC-derived cell lines (HONE-1, SUNE1, HK1, TW01, TW04, and C666-1). Their expression levels were compared with that of a nonmalignant nasopharyngeal epithelial cell line (NP69) using quantitative real-time PCR (RT-qPCR) assay. Of the eight genes studied, the expressions of four ribosomal protein genes uS8 (S8), uS4 (S9), eS31 (S27a), and uL14 (L23) were found to be significantly downregulated in NPC cell lines relative to NP69. Our findings provide novel empirical evidence of these four ribosomal protein genes as NPC-associated genetic factors and reinforce the relevance of ribosomal proteins in the carcinogenesis of nasopharyngeal cancer.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  4. Nadarajah K, Kumar IS
    Int J Mol Sci, 2019 Aug 01;20(15).
    PMID: 31374851 DOI: 10.3390/ijms20153766
    As a semi-aquatic plant, rice requires water for proper growth, development, and orientation of physiological processes. Stress is induced at the cellular and molecular level when rice is exposed to drought or periods of low water availability. Plants have existing defense mechanisms in planta that respond to stress. In this review we examine the role played by miRNAs in the regulation and control of drought stress in rice through a summary of molecular studies conducted on miRNAs with emphasis on their contribution to drought regulatory networks in comparison to other plant systems. The interaction between miRNAs, target genes, transcription factors and their respective roles in drought-induced stresses is elaborated. The cross talk involved in controlling drought stress responses through the up and down regulation of targets encoding regulatory and functional proteins is highlighted. The information contained herein can further be explored to identify targets for crop improvement in the future.
    Matched MeSH terms: Gene Expression Regulation, Plant*
  5. Samad AFA, Kamaroddin MF, Sajad M
    Adv Nutr, 2021 Feb 01;12(1):197-211.
    PMID: 32862223 DOI: 10.1093/advances/nmaa095
    microRNAs (miRNAs) are well known as major players in mammalian and plant genetic systems that act by regulating gene expression at the post-transcriptional level. These tiny molecules can regulate target genes (mRNAs) through either cleavage or translational inhibition. Recently, the discovery of plant-derived miRNAs showing cross-kingdom abilities to regulate mammalian gene expression has prompted exciting discussions among researchers. After being acquired orally through the diet, plant miRNAs can survive in the digestive tract, enter the circulatory system, and regulate endogenous mRNAs. Here, we review current knowledge regarding the cross-kingdom mechanisms of plant miRNAs, related controversies, and potential applications of these miRNAs in dietary therapy, which will provide new insights for plant miRNA investigations related to health issues in humans.
    Matched MeSH terms: Gene Expression Regulation, Plant*
  6. Ealam Selvan M, Lim KS, Teo CH, Lim YY
    J Vis Exp, 2022 Oct 21.
    PMID: 36342167 DOI: 10.3791/64565
    Circular RNAs (circRNAs) are a class of non-coding RNAs that are formed via back-splicing. These circRNAs are predominantly studied for their roles as regulators of various biological processes. Notably, emerging evidence demonstrates that host circRNAs can be differentially expressed (DE) upon infection with pathogens (e.g., influenza and coronaviruses), suggesting a role for circRNAs in regulating host innate immune responses. However, investigations on the role of circRNAs during pathogenic infections are limited by the knowledge and skills required to carry out the necessary bioinformatic analysis to identify DE circRNAs from RNA sequencing (RNA-seq) data. Bioinformatics prediction and identification of circRNAs is crucial before any verification, and functional studies using costly and time-consuming wet-lab techniques. To solve this issue, a step-by-step protocol of in silico prediction and characterization of circRNAs using RNA-seq data is provided in this manuscript. The protocol can be divided into four steps: 1) Prediction and quantification of DE circRNAs via the CIRIquant pipeline; 2) Annotation via circBase and characterization of DE circRNAs; 3) CircRNA-miRNA interaction prediction through Circr pipeline; 4) functional enrichment analysis of circRNA parental genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). This pipeline will be useful in driving future in vitro and in vivo research to further unravel the role of circRNAs in host-pathogen interactions.
    Matched MeSH terms: Gene Expression Profiling/methods
  7. Zhang H, Mo Y, Wang L, Zhang H, Wu S, Sandai D, et al.
    Front Immunol, 2024;15:1339647.
    PMID: 38660311 DOI: 10.3389/fimmu.2024.1339647
    INTRODUCTION: Over the past decades, immune dysregulation has been consistently demonstrated being common charactoristics of endometriosis (EM) and Inflammatory Bowel Disease (IBD) in numerous studies. However, the underlying pathological mechanisms remain unknown. In this study, bioinformatics techniques were used to screen large-scale gene expression data for plausible correlations at the molecular level in order to identify common pathogenic pathways between EM and IBD.

    METHODS: Based on the EM transcriptomic datasets GSE7305 and GSE23339, as well as the IBD transcriptomic datasets GSE87466 and GSE126124, differential gene analysis was performed using the limma package in the R environment. Co-expressed differentially expressed genes were identified, and a protein-protein interaction (PPI) network for the differentially expressed genes was constructed using the 11.5 version of the STRING database. The MCODE tool in Cytoscape facilitated filtering out protein interaction subnetworks. Key genes in the PPI network were identified through two topological analysis algorithms (MCC and Degree) from the CytoHubba plugin. Upset was used for visualization of these key genes. The diagnostic value of gene expression levels for these key genes was assessed using the Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) The CIBERSORT algorithm determined the infiltration status of 22 immune cell subtypes, exploring differences between EM and IBD patients in both control and disease groups. Finally, different gene expression trends shared by EM and IBD were input into CMap to identify small molecule compounds with potential therapeutic effects.

    RESULTS: 113 differentially expressed genes (DEGs) that were co-expressed in EM and IBD have been identified, comprising 28 down-regulated genes and 86 up-regulated genes. The co-expression differential gene of EM and IBD in the functional enrichment analyses focused on immune response activation, circulating immunoglobulin-mediated humoral immune response and humoral immune response. Five hub genes (SERPING1、VCAM1、CLU、C3、CD55) were identified through the Protein-protein Interaction network and MCODE.High Area Under the Curve (AUC) values of Receiver Operating Characteristic (ROC) curves for 5hub genes indicate the predictive ability for disease occurrence.These hub genes could be used as potential biomarkers for the development of EM and IBD. Furthermore, the CMap database identified a total of 9 small molecule compounds (TTNPB、CAY-10577、PD-0325901 etc.) targeting therapeutic genes for EM and IBD.

    DISCUSSION: Our research revealed common pathogenic mechanisms between EM and IBD, particularly emphasizing immune regulation and cell signalling, indicating the significance of immune factors in the occurence and progression of both diseases. By elucidating shared mechanisms, our study provides novel avenues for the prevention and treatment of EM and IBD.

    Matched MeSH terms: Gene Expression Regulation; Gene Expression Profiling
  8. Ng WK, Lim TS, Lai NS
    Protein Expr Purif, 2016 11;127:73-80.
    PMID: 27412717 DOI: 10.1016/j.pep.2016.07.004
    Neonatal Fc-receptor (FcRn) with its affinity to immunoglobulin G (IgG) has been the subject of many pharmacokinetic studies in the past century. This protein is well known for its unique feature in maintaining the circulating IgG from degradation in blood plasma. FcRn is formed by non-covalent association between the α-chain with the β-2-microglobulin (β2m). Many studies have been conducted to produce FcRn in the laboratory, mainly using mammalian tissue culture as host for recombinant protein expression. In this study, we demonstrate a novel strategy to express the α-chain of FcRn using Escherichia coli as the expression host. The expression vector that carries the cDNA of the α-chain was transformed into expression host, Rosetta-gami 2 strain for inducible expression. The bacterial culture was grown in a modified growth medium which constitutes of terrific broth, sodium chloride (NaCl), glucose and betaine. A brief heat shock at 45 °C was carried out after induction, before the temperature for expression was reduced to 22 °C and grown for 16 h. The soluble form of the α-chain of FcRn expressed was tested in the ELISA and dot blot immunoassay to confirm its native functionality. The results implied that the α-chain of FcRn expressed using this method is functional and retains its pH-dependent affinity to IgG. Our study significantly suggests that the activity of human FcRn remain active and functional in the absence of β2m.
    Matched MeSH terms: Gene Expression*
  9. Chan WT, Nieto C, Harikrishna JA, Khoo SK, Othman RY, Espinosa M, et al.
    J Bacteriol, 2011 Sep;193(18):4612-25.
    PMID: 21764929 DOI: 10.1128/JB.05187-11
    Type II (proteic) toxin-antitoxin systems (TAS) are ubiquitous among bacteria. In the chromosome of the pathogenic bacterium Streptococcus pneumoniae, there are at least eight putative TAS, one of them being the yefM-yoeB(Spn) operon studied here. Through footprinting analyses, we showed that purified YefM(Spn) antitoxin and the YefM-YoeB(Spn) TA protein complex bind to a palindrome sequence encompassing the -35 region of the main promoter (P(yefM2)) of the operon. Thus, the locus appeared to be negatively autoregulated with respect to P(yefM2), since YefM(Spn) behaved as a weak repressor with YoeB(Spn) as a corepressor. Interestingly, a BOX element, composed of a single copy (each) of the boxA and boxC subelements, was found upstream of promoter P(yefM2). BOX sequences are pneumococcal, perhaps mobile, genetic elements that have been associated with bacterial processes such as phase variation, virulence regulation, and genetic competence. In the yefM-yoeB(Spn) locus, the boxAC element provided an additional weak promoter, P(yefM1), upstream of P(yefM2) which was not regulated by the TA proteins. In addition, transcriptional fusions with a lacZ reporter gene showed that P(yefM1) was constitutive albeit weaker than P(yefM2). Intriguingly, the coupling of the boxAC element to P(yefM1) and yefM(Spn) in cis (but not in trans) led to transcriptional activation, indicating that the regulation of the yefM-yoeB(Spn) locus differs somewhat from that of other TA loci and may involve as yet unidentified elements. Conservation of the boxAC sequences in all available sequenced genomes of S. pneumoniae which contained the yefM-yoeB(Spn) locus suggested that its presence may provide a selective advantage to the bacterium.
    Matched MeSH terms: Gene Expression Regulation, Bacterial*
  10. Masura SS, Shaharuddin NA, Masani MYA, Chan KL, Low EL, Chan PL, et al.
    Transgenic Res, 2024 Oct;33(5):383-397.
    PMID: 39120800 DOI: 10.1007/s11248-024-00396-8
    Root-specific or preferential promoters are essential to genetically modify plants with beneficial root traits. We have characterised the promoter from an oil palm metallothionein gene (EgMT) and performed a serial 5' deletion analysis to identify the region(s) essential for transgenes expression in roots. Stable functional characterisation of tobacco transgenic lines using the T1 generation showed that a deletion construct, designated as RSP-2D (1107 bp), directed strong GUS expression at all stages of root development, particularly in mature roots. Other constructs, RSP-2A (2481 bp) and RSP-2C (1639 bp), drove GUS expression in roots with an intensity lower than RSP-2D. The promoter activity was also detectable in seed pods and immature seeds, albeit at lower levels than CaMV35S. The promoter activity may also be induced by wounding as intact GUS staining was observed at the flower- and leaf-cutting sites of T1 samples carrying either RSP-2C or RSP-2D constructs. The promoter sequence contains cis-acting elements that may act as negative regulators and be responsible for root specificity. The results further indicated that the 5' UTR and ATATT sequences are essential for strong promoter activity. This study highlights the potential of RSP-2D promoter as a tool for modifying root traits through genetic engineering.
    Matched MeSH terms: Gene Expression Regulation, Plant*
  11. Sahebi M, Hanafi MM, Rafii MY, Mahmud TMM, Azizi P, Osman M, et al.
    Biomed Res Int, 2018;2018:3158474.
    PMID: 30175125 DOI: 10.1155/2018/3158474
    Drought tolerance is an important quantitative trait with multipart phenotypes that are often further complicated by plant phenology. Different types of environmental stresses, such as high irradiance, high temperatures, nutrient deficiencies, and toxicities, may challenge crops simultaneously; therefore, breeding for drought tolerance is very complicated. Interdisciplinary researchers have been attempting to dissect and comprehend the mechanisms of plant tolerance to drought stress using various methods; however, the limited success of molecular breeding and physiological approaches suggests that we rethink our strategies. Recent genetic techniques and genomics tools coupled with advances in breeding methodologies and precise phenotyping will likely reveal candidate genes and metabolic pathways underlying drought tolerance in crops. The WRKY transcription factors are involved in different biological processes in plant development. This zinc (Zn) finger protein family, particularly members that respond to and mediate stress responses, is exclusively found in plants. A total of 89 WRKY genes in japonica and 97 WRKY genes in O. nivara (OnWRKY) have been identified and mapped onto individual chromosomes. To increase the drought tolerance of rice (Oryza sativa L.), research programs should address the problem using a multidisciplinary strategy, including the interaction of plant phenology and multiple stresses, and the combination of drought tolerance traits with different genetic and genomics approaches, such as microarrays, quantitative trait loci (QTLs), WRKY gene family members with roles in drought tolerance, and transgenic crops. This review discusses the newest advances in plant physiology for the exact phenotyping of plant responses to drought to update methods of analysing drought tolerance in rice. Finally, based on the physiological/morphological and molecular mechanisms found in resistant parent lines, a strategy is suggested to select a particular environment and adapt suitable germplasm to that environment.
    Matched MeSH terms: Gene Expression Regulation, Plant*
  12. Pasha F, Alatawi A, Amir M, Faridi U
    Pak J Biol Sci, 2020 Jan;23(8):1086-1095.
    PMID: 32700860 DOI: 10.3923/pjbs.2020.1086.1095
    BACKGROUND AND OBJECTIVE: The epidemiology of Nipah virus (NiV) was shortly seen in many Asian countries like Malaysia, Bangladesh and India most recently. Nipah virus also synonym as bat born virus is transmitted primarily by fruit bats. The 2 different strains transmitted are Hendra (highly pathogenic) and Cedar (non-pathogenic). The present study was attempt to develop recombinant protein based reagents for molecular diagnosis of Nipah.

    MATERIALS AND METHODS: The different primer sets were developed using bioinformatics software DNASTAR. The E. coli cells were used for recombinant protein expression.

    RESULTS: The NiV 'G' region primers were designed and amplified for 1 kb fragment and cloned. The NiV 'G' fragments were sub-cloned in pET-28(+) B and pGEX-5x-1. Recombinant protein thus obtained in soluble form in both the cases was essayed using western blot. The result showed the protein expression yield was more in pET-28(+) B with low stability and vice versa for pGEX-5x-1.

    CONCLUSION: The antibodies raised from the protein can be used as diagnostic reagent for detection of NiV. Thus, a new diagnostic technique can be industrialized.

    Matched MeSH terms: Gene Expression Regulation, Viral*
  13. Osei GY, Adu-Amankwaah J, Koomson S, Beletaa S, Asiamah EA, Smith-Togobo C, et al.
    Mol Biol Rep, 2023 Nov;50(11):9575-9585.
    PMID: 37776413 DOI: 10.1007/s11033-023-08810-w
    Colorectal cancer (CRC) is a serious global health concern, with a high incidence and mortality rate. Although there have been advancements in the early detection and treatment of CRC, therapy resistance is common. MicroRNAs (miRNAs), a type of small non-coding RNA that regulates gene expression, are key players in the initiation and progression of CRC. Recently, there has been growing attention to the complex interplay of miRNAs in cancer development. miRNAs are powerful RNA molecules that regulate gene expression and have been implicated in various physiological and pathological processes, including carcinogenesis. By identifying current challenges and limitations of treatment strategies and suggesting future research directions, this review aims to contribute to ongoing efforts to enhance CRC diagnosis and treatment. It also provides a comprehensive overview of the role miRNAs play in CRC carcinogenesis and explores the potential of miRNA-based therapies as a treatment option. Importantly, this review highlights the exciting potential of targeted modulation of miRNA function as a therapeutic approach for CRC.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/genetics
  14. Li WJ, Xu CK, Ong SQ, Majid AHA, Wang JG, Li XZ
    PMID: 39326209 DOI: 10.1016/j.cbd.2024.101333
    Studying differences in transcriptomes across various development stages of insects is necessary to uncover the physiological and molecular mechanism underlying development and metamorphosis. We here present the first transcriptome data generated under Illumina Hiseq platform concerning Zeugodacus tau (Walker) larvae from Nanchang, China. In total, 11,702 genes were identified from 9 transcriptome libraries of three development stages of Z. tau larvae. 7219 differentially expressed genes (DEGs) were screened out from the comparisons between each two development stages of Z. tau larvae, and their roles in development and metabolism were analyzed. Comparative analyses of transcriptome data showed that there are 5333 DEGs between 1-day and 7-day old larvae, consisting of 1609 up-regulated and 3724 down-regulated genes. Expressions of DEGs were more abundant in L7 than in L1 and L3, which might be associated with metamorphosis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested the enrichment of metabolic process. KOG annotation further confirmed that 20-hydroxyecdysone (20E) pathway related genes Cyp4ac1_1, Cyp4aa1, Cyp313a4_3 were critical for the biosynthesis, transport, and catabolism of secondary metabolites and lipid transport and metabolism. Expression patterns of 8 DEGs were verified using quantitative real-time PCR (RT-qPCR). This study elucidated the DEGs and their roles underlying three development stages of Z. tau larvae, which provided valuable information for further functional genomic research.
    Matched MeSH terms: Gene Expression Regulation, Developmental; Gene Expression Profiling
  15. Chu C, Zhang Y, Yu R, Liu B, Wang B, Xu Z, et al.
    J Investig Med, 2025 Jan;73(1):54-66.
    PMID: 39324215 DOI: 10.1177/10815589241290199
    Cisplatin (DDP) resistance represents a pivotal contributing factor to chemotherapy failure and adverse patient outcomes in gastric cancer (GC). The objective of the present study was to investigate the roles and underlying mechanisms of myocyte enhancer factor 2A (MEF2A) in DDP resistance in GC. GC cell line AGS and MKN-45 cells were applied to construct DDP-resistant cells. CCK-8, colony formation, and flow cytometry methods were validated for determining the IC50 value of DDP and cell survival of GC cells. qRT-PCR and western blotting analysis quantified the molecular levels at mRNA and protein, respectively. Chromatin immunoprecipitation and dual-luciferase assays validated the molecular relationship between MEF2A and NF-κB inhibitor alpha (NFKBIA). Roles of MEF2A in in vivo were performed employing a xenograft model. The results showed that NFKBIA was greatly decreased in DDP-resistant AGS and MKN-45 cells compared to their respective parental cells. Increasing NFKBIA expression impaired the IC50 value of DDP and cell survival in DDP-resistant cells, while these alterations were rescued upon TNF-α treatment. Mechanistically, MEF2A acts as a transcriptional activator of NFKBIA, which led to the reduction of phosphorylation of p65 and cytoplasmic retention. Moreover, MEF2A overexpression promoted the sensitivity of GC cells to DDP and tumor growth, whereas these effects were partially reversed by NFKBIA silence. Collectively, MEF2A mitigated the DDP resistance in GC cells by modulatory actions on the NFKBIA/NF-κB signaling, shedding light on MEF2A/NFKBIA might be a promising intervention target for improving DDP resistance in GC.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/drug effects
  16. Chong ZX
    Biochim Biophys Acta Rev Cancer, 2024 Nov;1879(6):189191.
    PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191
    Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  17. Das S, Kumar S
    J Med Virol, 2023 Sep;95(9):e29077.
    PMID: 37675861 DOI: 10.1002/jmv.29077
    Long coronavirus disease (COVID) has emerged as a global health issue, affecting a substantial number of people worldwide. However, the underlying mechanisms that contribute to the persistence of symptoms in long COVID remain obscure, impeding the development of effective diagnostic and therapeutic interventions. In this study, we utilized computational methods to examine the gene expression profiles of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and their associations with the wide range of symptoms observed in long COVID patients. Using a comprehensive data set comprising over 255 symptoms affecting multiple organ systems, we identified differentially expressed genes and investigated their functional similarity, leading to the identification of key genes with the potential to serve as biomarkers for long COVID. We identified the participation of hub genes associated with G-protein-coupled receptors (GPCRs), which are essential regulators of T-cell immunity and viral infection responses. Among the identified common genes were CTLA4, PTPN22, KIT, KRAS, NF1, RET, and CTNNB1, which play a crucial role in modulating T-cell immunity via GPCR and contribute to a variety of symptoms, including autoimmunity, cardiovascular disorders, dermatological manifestations, gastrointestinal complications, pulmonary impairments, reproductive and genitourinary dysfunctions, and endocrine abnormalities. GPCRs and associated genes are pivotal in immune regulation and cellular functions, and their dysregulation may contribute to the persistent immune responses, chronic inflammation, and tissue abnormalities observed in long COVID. Targeting GPCRs and their associated pathways could offer promising therapeutic strategies to manage symptoms and improve outcomes for those experiencing long COVID. However, the complex mechanisms underlying the condition require continued study to develop effective treatments. Our study has significant implications for understanding the molecular mechanisms underlying long COVID and for identifying potential therapeutic targets. In addition, we have developed a comprehensive website (https://longcovid.omicstutorials.com/) that provides a curated list of biomarker-identified genes and treatment recommendations for each specific disease, thereby facilitating informed clinical decision-making and improved patient management. Our study contributes to the understanding of this debilitating disease, paving the way for improved diagnostic precision, and individualized therapeutic interventions.
    Matched MeSH terms: Gene Expression Profiling*
  18. Hiew JY, Lim YS, Liu H, Ng CS
    Commun Biol, 2025 Mar 02;8(1):347.
    PMID: 40025162 DOI: 10.1038/s42003-025-07790-w
    Inflammation is a hallmark of amyotrophic lateral sclerosis (ALS), particularly in cases with SOD1 mutations. Using integrative transcriptomics, we analyzed gene expression changes in mouse models throughout progression, human induced-pluripotent stem cells (hiPSCs), and post-mortem spinal cord tissue from ALS patients. We identified a conserved upregulation of interferon (IFN) genes and IFN-stimulating genes (ISGs) in both mouse models and human ALS, with a predominance Type I IFNs (IFN-α/β) in mice and Type II IFNs (IFN-γ) in humans. In mouse models, we observed robust and sustained upregulation of Type I and II ISGs, including ATF3, beginning at disease onset stage and persisting throughout disease progression. Single-cell transcriptomics further pinpointed vascular endothelial cells as a major source of ISGs. Furthermore, we found that the STING-TBK1 axis is essential for the induction of Type II ISGs in ALS, as its deletion impaired their expression. Our study uncovers a conserved ISGs signature across ALS models and patients, highlighting the potential role of innate immune activation in ALS pathogenesis. These findings suggest that ISGs may serve as potential biomarkers and therapeutic targets for ALS.
    Matched MeSH terms: Gene Expression Profiling*
  19. Chen G, Zhang X, Cui G, Zhang W, Bai Q, Zhang X
    Physiol Plant, 2025;177(2):e70138.
    PMID: 40042036 DOI: 10.1111/ppl.70138
    Glycyrrhiza uralensis Fisch (G. uralensis) is a key species for windbreak and sand fixation, possessing notable pharmacological and economic value. However, the yield of G. uralensis is considerably impacted due to its cultivation in arid, semi-arid, and salt-affected regions. Silicon (Si) has been reported to improve plant tolerance to drought and salt stress by regulating nitrogen and secondary metabolism. Herein, the effects of Si treatment on nitrogen and secondary metabolism of G. uralensis seedlings under drought (D), salt (S), and drought-salt (SD) stresses were investigated in combination with physiological and transcriptomic analyses. The results indicated that stress conditions significantly inhibited the growth of G. uralensis seedlings by suppressing nitrogen and secondary metabolism. Si treatment counteracted these inhibitions to some extent. Specifically, Si treatment increased soluble protein content by approximately 15% by regulating the nitrogen metabolism of G. uralensis under D stress. Furthermore, Si treatment elevated the content of glycyrrhetinic acid by about 89% under SD stress by increasing the content of primary metabolites and regulating the expression of enzymes involved in the biosynthesis of glycyrrhizic acid and liquiritin, including 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), squalene synthase (SQS), and β-amyrin synthase (β-AS). In summary, our findings suggest that Si could alleviate the adverse effects induced by drought and/or salt stresses on the growth of G. uralensis seedlings by regulating nitrogen metabolisms, which further triggered the accumulation of secondary metabolites, ultimately improving the stress resistance of cultivated G. uralensis seedlings. This work provides direction for Si to improve stress resistance.
    Matched MeSH terms: Gene Expression Regulation, Plant/drug effects
  20. Ali Hassan NZ, Mokhtar NM, Kok Sin T, Mohamed Rose I, Sagap I, Harun R, et al.
    PLoS One, 2014;9(4):e92553.
    PMID: 24694993 DOI: 10.1371/journal.pone.0092553
    Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV) and gene expression in colorectal cancer (CRC) samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic*; Gene Expression Profiling*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links