Displaying publications 81 - 100 of 245 in total

Abstract:
Sort:
  1. Ang TN, Young BR, Taylor M, Burrell R, Aroua MK, Chen WH, et al.
    Chemosphere, 2020 Dec;260:127496.
    PMID: 32659541 DOI: 10.1016/j.chemosphere.2020.127496
    Activated carbons have been reported to be useful for adsorptive removal of the volatile anaesthetic sevoflurane from a vapour stream. The surface functionalities on activated carbons could be modified through aqueous oxidation using oxidising solutions to enhance the sevoflurane adsorption. In this study, an attempt to oxidise the surface of a commercial activated carbon to improve its adsorption capacity for sevoflurane was conducted using 6 mol/L nitric acid, 2 mol/L ammonium persulfate, and 30 wt per cent (wt%) of hydrogen peroxide (H2O2). The adsorption tests at fixed conditions (bed depth: 10 cm, inlet concentration: 528 mg/L, and flow rate: 3 L/min) revealed that H2O2 oxidation gave desirable sevoflurane adsorption (0.510 ± 0.005 mg/m2). A parametric study was conducted with H2O2 to investigate the effect of oxidation conditions to the changes in surface oxygen functionalities by varying the concentration, oxidation duration, and temperature, and the Conductor-like Screening Model for Real Solvents (COSMO-RS) was applied to predict the interactions between oxygen functionalities and sevoflurane. The H2O2 oxidation incorporated varying degrees of both surface oxygen functionalities with hydrogen bond (HB) acceptor and HB donor characters under the studied conditions. Oxidised samples with enriched oxygen functionalities with HB acceptor character and fewer HB donor character exhibited better adsorption capacity for sevoflurane. The presence of a high amount of oxygen functional groups with HB donor character adversely affected the sevoflurane adsorption despite the enrichment of oxygen functional groups with HB acceptor character that have a higher tendency to adsorb sevoflurane.
    Matched MeSH terms: Hydrogen Bonding
  2. Homouz D, Joyce-Tan KH, ShahirShamsir M, Moustafa IM, Idriss HT
    J Mol Graph Model, 2018 09;84:236-241.
    PMID: 30138833 DOI: 10.1016/j.jmgm.2018.08.007
    DNA polymerase β is a 39 kDa enzyme that is a major component of Base Excision Repair in human cells. The enzyme comprises two major domains, a 31 kDa domain responsible for the polymerase activity and an 8 kDa domain, which bind ssDNA and has a deoxyribose phosphate (dRP) lyase activity. DNA polymerase β was shown to be phosphorylated in vitro with protein kinase C (PKC) at serines 44 and 55 (S44 and S55), resulting in loss of its polymerase enzymic activity, but not its ability to bind ssDNA. In this study, we investigate the potential phosphorylation-induced structural changes for DNA polymerase β using molecular dynamics simulations. The simulations show drastic conformational changes of the polymerase structure as a result of S44 phosphorylation. Phosphorylation-induced conformational changes transform the closed (active) enzyme structure into an open one. Further analysis of the results points to a key hydrogen bond and newly formed salt bridges as potential drivers of these structural fluctuations. The changes observed with S55/44 and S55 phosphorylation were less dramatic and the integrity of the H-bond was not compromised. Thus the phosphorylation of S44 is the major contributor to structural fluctuations that lead to loss of enzymatic activity.
    Matched MeSH terms: Hydrogen Bonding
  3. Zainal Abidin MH, Abd Halim KB, Huyop F, Tengku Abdul Hamid TH, Abdul Wahab R, Abdul Hamid AA
    J Mol Graph Model, 2019 07;90:219-225.
    PMID: 31103914 DOI: 10.1016/j.jmgm.2019.05.003
    Dehalogenase E (DehE) is a non-stereospecific enzyme produced by the soil bacterium, Rhizobium sp. RC1. Till now, the catalytic mechanism of DehE remains unclear although several literature concerning its structure and function are available. Since DehE is non-stereospecific, the enzyme was hypothesized to follow a 'direct attack mechanism' for the catalytic breakdown of a haloacid. For a molecular insight, the DehE modelled structure was docked in silico with the substrate 2-chloropropionic acid (2CP) in the active site. The ideal position of DehE residues that allowed a direct attack mechanism was then assessed via molecular dynamics (MD) simulation. It was revealed that the essential catalytic water was hydrogen bonded to the 'water-bearer', Asn114, at a relatively constant distance of ∼2.0 Å after 50 ns. The same water molecule was also closely sited to the catalytic Asp189 at an average distance of ∼2.0 Å, signifying the imperative role of the latter to initiate proton abstraction for water activation. This reaction was crucial to promote a direct attack on the α-carbon of 2CP to eject the halide ion. The water molecule was oriented favourably towards the α-carbon of 2CP at an angle of ∼75°, mirrored by the formation of stable enzyme-substrate orientations throughout the simulation. The data therefore substantiated that the degradation of a haloacid by DehE followed a 'direct attack mechanism'. Hence, this study offers valuable information into future advancements in the engineering of haloacid dehalogenases with improved activity and selectivity, as well as functionality in solvents other than water.
    Matched MeSH terms: Hydrogen Bonding
  4. Amir-Hassan A, Lee VS, Baharuddin A, Othman S, Xu Y, Huang M, et al.
    J Mol Graph Model, 2017 06;74:273-287.
    PMID: 28458006 DOI: 10.1016/j.jmgm.2017.03.010
    Effective novel peptide inhibitors which targeted the domain III of the dengue envelope (E) protein by blocking dengue virus (DENV) entry into target cells, were identified. The binding affinities of these peptides towards E-protein were evaluated by using a combination of docking and explicit solvent molecular dynamics (MD) simulation methods. The interactions of these complexes were further investigated by using the Molecular Mechanics-Poisson Boltzmann Surface Area (MMPBSA) and Molecular Mechanics Generalized Born Surface Area (MMGBSA) methods. Free energy calculations of the peptides interacting with the E-protein demonstrated that van der Waals (vdW) and electrostatic interactions were the main driving forces stabilizing the complexes. Interestingly, calculated binding free energies showed good agreement with the experimental dissociation constant (Kd) values. Our results also demonstrated that specific residues might play a crucial role in the effective binding interactions. Thus, this study has demonstrated that a combination of docking and molecular dynamics simulations can accelerate the identification process of peptides as potential inhibitors of dengue virus entry into host cells.
    Matched MeSH terms: Hydrogen Bonding
  5. Ghaffari Khaligh N, Mihankhah T, Titinchi S, Shahnavaz Z, Rafie Johan M
    Turk J Chem, 2020;44(4):1100-1109.
    PMID: 33488215 DOI: 10.3906/kim-2005-6
    This work introduces a new additive named 4,4'-trimethylenedipiperidine for the practical and ecofriendly preparation of ethyl 5-amino-7-(4-phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylate derivatives. This chemical is commercially available and easy to handle. It also possesses a low melting point and a broad liquid range temperature, high thermal stability, and good solubility in water. Based on green chemistry principles, the reaction was performed in a) a mixture of green solvents i.e. water and ethanol (1:1 v/v) at reflux temperature, and b) the additive was liquefied at 65 °C and the reaction was conducted in the liquid state of the additive. High yields of the desired triazolo-pyrimidines were obtained under both aforementioned conditions. Our results demonstrated that this additive, containing 2 Lewis base sites and able to act as an acceptor-donor hydrogen bonding group, is a novel and efficient alternative to piperidine, owing to its unique properties such as its reduced toxicity, nonflammable nature, nonvolatile state, broad liquid range temperature, high thermal stability, and ability to be safely handled. Furthermore, this additive could be completely recovered and exhibited high recyclability without any change in its chemical structure and no significant reduction in its activity. The current methodology has several advantages: (a) it avoids the use of hazardous materials, as well as toxic, volatile, and flammable solvents, (b) it does not entail tedious processes, harsh conditions, and the multistep preparation of catalysts, (c) it uses a metal-free and noncorrosive catalyst, and (d) reduces the generation of hazardous waste and simple work-up processes. The most important result of this study is that 4,4'-trimethylenedipiperidine can be a promising alternative for toxic, volatile, and flammable base reagents in organic synthesis owing to its unique properties.
    Matched MeSH terms: Hydrogen Bonding
  6. Ravichandran R, Ridzwan NFW, Mohamad SB
    J Biomol Struct Dyn, 2020 Dec 31.
    PMID: 33382017 DOI: 10.1080/07391102.2020.1867641
    The disease Tuberculosis (TB) is caused by a bacterium called Mycobacterium tuberculosis (Mtb). The bacterial cell-wall consists of peptidoglycan layer maintains the cellular integrity and cell viability. The main problem resides in the cell cycle of Mycobacterium tuberculosis in its quiescent form which is not targeted by any drugs hence there is an immediate need for new antibiotics to target the cell wall. The current study deals with the dTDP-4-dehydrorahmnose reductase (RmlD) which is the final enzyme in the series of cell-wall proteins of Mtb. The RmlD is a part of Carbohydrate biosynthesis has been considered as a good drug target for the novel class of antibiotics. Our study begins with the protein structure prediction, Homology studies were conducted using the Phyre2 web server. The structure is then refined and subjected to molecular dynamics simulations for 50 ns using GROMACS. The clustering analysis has been carried out and generated 41 clusters with 2 Å as the cut-off. Blind docking virtual screening was performed against RmlD protein using the Super Natural-II database with AutoDock4.0. its results helped to screen top ligands based on best binding energies. In both dockings, there are some common residues in which the ligands are interacting and forming the Hydrogen bonds such as Asp-105, Val-158, Thr-160, Gly-161, Arg-224, Arg-256. The ligand-567 giving the best results by being in the top-3 of all the clusters in both blind docking as well as the active-site docking. Hence ligand-567 can be a potential inhibitor of RmlD which can further inhibit the cell-wall synthesis of Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Hydrogen Bonding
  7. Elengoe A, Hamdan S
    Interdiscip Sci, 2017 Dec;9(4):478-498.
    PMID: 27517798 DOI: 10.1007/s12539-016-0181-8
    In this study, we explored the possibility of determining the synergistic interactions between nucleotide-binding domain (NBD) of Homo sapiens heat-shock 70 kDa protein (Hsp70) and E1A 32 kDa of adenovirus serotype 5 motif (PNLVP) in the efficiency of killing of tumor cells in cancer treatment. At present, the protein interaction between NBD and PNLVP motif is still unknown, but believed to enhance the rate of virus replication in tumor cells. Three mutant models (E229V, H225P and D230C) were built and simulated, and their interactions with PNLVP motif were studied. The PNLVP motif showed the binding energy and intermolecular energy values with the novel E229V mutant at -7.32 and -11.2 kcal/mol. The E229V mutant had the highest number of hydrogen bonds (7). Based on the root mean square deviation, root mean square fluctuation, hydrogen bonds, salt bridge, secondary structure, surface-accessible solvent area, potential energy and distance matrices analyses, it was proved that the E229V had the strongest and most stable interaction with the PNLVP motif among all the four protein-ligand complex structures. The knowledge of this protein-ligand complex model would help in designing Hsp70 structure-based drug for cancer therapy.
    Matched MeSH terms: Hydrogen Bonding
  8. Edueng K, Mahlin D, Larsson P, Bergström CAS
    J Control Release, 2017 06 28;256:193-202.
    PMID: 28412224 DOI: 10.1016/j.jconrel.2017.04.015
    We developed a step-by-step experimental protocol using differential scanning calorimetry (DSC), dynamic vapour sorption (DVS), polarized light microscopy (PLM) and a small-scale dissolution apparatus (μDISS Profiler) to investigate the mechanism (solid-to-solid or solution-mediated) by which crystallization of amorphous drugs occurs upon dissolution. This protocol then guided how to stabilize the amorphous formulation. Indapamide, metolazone, glibenclamide and glipizide were selected as model drugs and HPMC (Pharmacoat 606) and PVP (K30) as stabilizing polymers. Spray-dried amorphous indapamide, metolazone and glibenclamide crystallized via solution-mediated nucleation while glipizide suffered from solid-to-solid crystallization. The addition of 0.001%-0.01% (w/v) HPMC into the dissolution medium successfully prevented the crystallization of supersaturated solutions of indapamide and metolazone whereas it only reduced the crystallization rate for glibenclamide. Amorphous solid dispersion (ASD) formulation of glipizide and PVP K30, at a ratio of 50:50% (w/w) reduced but did not completely eliminate the solid-to-solid crystallization of glipizide even though the overall dissolution rate was enhanced both in the absence and presence of HPMC. Raman spectroscopy indicated the formation of a glipizide polymorph in the dissolution medium with higher solubility than the stable polymorph. As a complementary technique, molecular dynamics (MD) simulations of indapamide and glibenclamide with HPMC was performed. It was revealed that hydrogen bonding patterns of the two drugs with HPMC differed significantly, suggesting that hydrogen bonding may play a role in the greater stabilizing effect on supersaturation of indapamide, compared to glibenclamide.
    Matched MeSH terms: Hydrogen Bonding
  9. Chia TS, Quah CK
    Acta Crystallogr B Struct Sci Cryst Eng Mater, 2017 Apr 01;73(Pt 2):285-295.
    PMID: 28362293 DOI: 10.1107/S2052520616019405
    Isonicotinamide-4-methoxybenzoic acid co-crystal (1), C6H6N2O·C8H8O3, is formed through slow evaporation from methanol solution and it undergoes a first-order isosymmetry (monoclinic I2/a ↔ monoclinic I2/a) structural phase transition at Tc= 142.5 (5) K, which has been confirmed by an abrupt jump of crystallographic interaxial angle β from variable-temperature single-crystal XRD and small heat hysteresis (6.25 K) in differential scanning calorimetry measurement. The three-dimensional X-ray crystal structures of (1) at the low-temperature phase (LTP) (100, 140 and 142 K) and the high-temperature phase (HTP) (143, 150, 200, 250 and 300 K) were solved and refined as a simple non-disordered model with final R[F2> 2σ(F2)] ≃ 0.05. The asymmetric unit of (1) consists of crystallographically independent 4-methoxybenzoic acid (A) and isonicotinamide (B) molecules in both enantiotropic phases. Molecule A adopts a `near-hydroxyl' conformation in which the hydroxyl and methoxy groups are positioned on the same side. Both `near-hydroxyl' and `near-carbonyl' molecular conformations possess minimum conformational energies with an energy difference of hydrogen bonds which were preserved in both phases. However, these ABBA arrays are displaced from planarity upon LTP-to-HTP transition and the changes in inter-array interactions are observed in two-dimensional fingerprint plots of their Hirshfeld surfaces. The PIXEL energies of each molecular pair in both phases were calculated to investigate the difference in intermolecular interaction energies before and after the displacement of ABBA arrays from planarity, which directly leads to the single-crystal-to-single-crystal phase transition of (1).
    Matched MeSH terms: Hydrogen Bonding
  10. Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S
    Spectrochim Acta A Mol Biomol Spectrosc, 2017 Jun 15;181:254-263.
    PMID: 28376387 DOI: 10.1016/j.saa.2017.03.059
    Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04×104M-1), obtained at 298K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.
    Matched MeSH terms: Hydrogen Bonding
  11. Karunakaran R, Srikumar PS
    Mol Cell Biochem, 2018 Dec;449(1-2):55-62.
    PMID: 29532225 DOI: 10.1007/s11010-018-3342-8
    The crystallins are a family of monomeric proteins present in the mammalian lens and mutations in these proteins cause various forms of cataracts. The aim of our current study is to emphasize the structural characterization of aggregation propensity of mutation R58H on γD crystallin using molecular dynamics (MD) approach. MD result revealed that difference in the sequence level display a wide variation in the backbone atomic position, and thus exhibits rigid conformational dynamics. Changes in the flexibility of residues favoured to increase the number of intra-molecular hydrogen bonds in mutant R58H. Moreover, notable changes in the hydrogen bonding interaction resulted to cause the misfolding of mutant R58H by introducing α-helix. Principal component analysis (PCA) result suggested that mutant R58H showed unusual conformational dynamics along the two principal components when compared to the wild-type (WT)-γD crystallin. In a nutshell, the increased surface hydrophobicity could be the cause of self-aggregation of mutant R58H leading to aculeiform cataract.
    Matched MeSH terms: Hydrogen Bonding
  12. Sadat Mohajer F, Parvizpour S, Razmara J, Shahir Shamsir M
    J Biomol Struct Dyn, 2019 Feb;37(2):372-382.
    PMID: 29338614 DOI: 10.1080/07391102.2018.1427630
    Congenital myopathy is a broad category of muscular diseases with symptoms appearing at the time of birth. One type of congenital myopathy is Congenital Fiber Type Disproportion (CFTD), a severely debilitating disease. The G48D and G48C mutations in the D-loop and the actin-myosin interface are the two causes of CFTD. These mutations have been shown to significantly affect the structure and function of muscle fibers. To the author's knowledge, the effects of these mutations have not yet been studied. In this work, the power stroke structure of the head domain of myosin and the wild and mutated types of actin were modeled. Then, a MD simulation was run for the modeled structures to study the effects of these mutations on the structure, function, and molecular dynamics of actin. The wild and mutated actins docked with myosin showed differences in hydrogen bonding patterns, free binding energies, and hydrogen bond occupation frequencies. The G48D and G48C mutations significantly impacted the conformation of D-loops because of their larger size compared to Glycine and their ability to interfere with the polarity or hydrophobicity of this neutralized and hydrophobic loop. Therefore, the mutated loops were unable to fit properly into the hydrophobic groove of the adjacent G-actin. The abnormal structure of D-loops seems to result in the abnormal assembly of F-actins, giving rise to the symptoms of CFTD. It was also noted that G48C and G48D did not form hydrogen bonds with myosin in the residue 48 location. Nevertheless, in this case, muscles are unable to contract properly due to muscle atrophy.
    Matched MeSH terms: Hydrogen Bonding
  13. Jusoh N, Zainal H, Abdul Hamid AA, Bunnori NM, Abd Halim KB, Abd Hamid S
    J Mol Model, 2018 Mar 15;24(4):93.
    PMID: 29546582 DOI: 10.1007/s00894-018-3619-6
    Recent outbreaks of highly pathogenic influenza strains have highlighted the need to develop new anti-influenza drugs. Here, we report an in silico study of carvone derivatives to analyze their binding modes with neuraminidase (NA) active sites. Two proposed carvone analogues, CV(A) and CV(B), with 36 designed ligands were predicted to inhibit NA (PDB ID: 3TI6) using molecular docking. The design is based on structural resemblance with the commercial inhibitor, oseltamivir (OTV), ligand polarity, and amino acid residues in the NA active sites. Docking simulations revealed that ligand A18 has the lowest energy binding (∆Gbind) value of -8.30 kcal mol-1, comparable to OTV with ∆Gbind of -8.72 kcal mol-1. A18 formed seven hydrogen bonds (H-bonds) at residues Arg292, Arg371, Asp151, Trp178, Glu227, and Tyr406, while eight H-bonds were formed by OTV with amino acids Arg118, Arg292, Arg371, Glu119, Asp151, and Arg152. Molecular dynamics (MD) simulation was conducted to compare the stability between ligand A18 and OTV with NA. Our simulation study showed that the A18-NA complex is as stable as the OTV-NA complex during the MD simulation of 50 ns through the analysis of RMSD, RMSF, total energy, hydrogen bonding, and MM/PBSA free energy calculations.
    Matched MeSH terms: Hydrogen Bonding
  14. Koupaei Malek S, Gabris MA, Hadi Jume B, Baradaran R, Aziz M, Karim KJBA, et al.
    Daru, 2019 Jun;27(1):9-20.
    PMID: 30554368 DOI: 10.1007/s40199-018-0232-2
    Polyethylene glycol functionalized with oxygenated multi-walled carbon nanotubes (O-PEG-MWCNTs) as an efficient nanomaterial for the in vitro adsorption/release of curcumin (CUR) anticancer agent. The synthesized material was morphologically characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the CUR adsorption process was assessed with kinetic and isotherm models fitting well with pseudo-second order and Langmuir isotherms. The results showed that the proposed O-PEG-MWCNTs has a high adsorption capacity for CUR (2.0 × 103 mg/g) based on the Langmuir model. The in vitro release of CUR from O-PEG-MWCNTs was studied in simulating human body fluids with different pHs (ABS pH 5, intestinal fluid pH 6.6 and body fluid pH 7.4). Lastly, to confirm the success compliance of the O-PEG-MWCNT nanocomposite as a drug delivery system, the parameters affecting the CUR release such as temperature and PEG content were investigated. As a result, the proposed nanocomposite could be used as an efficient carrier for CUR delivery with an enhanced prolonged release property. Graphical Abstract ᅟ.
    Matched MeSH terms: Hydrogen Bonding
  15. Lee SK, Tan KW, Ng SW, Ooi KK, Ang KP, Abdah MA
    PMID: 24231745 DOI: 10.1016/j.saa.2013.10.084
    A cationic Schiff base ligand, TSB (L) and its Zn (II) complex (1) were synthesized and characterized by using CHN, (1)H-NMR, FT-IR, UV, LC-MS, and X-ray methods. Their ability to inhibit topoisomerase I, DNA cleavage activities, and cytotoxicity were studied. X-ray diffraction study shows that the mononuclear complex 1 is four coordinated with distorted tetrahedral geometry. The singly deprotonated Schiff base ligand L acts as a bidentate ON-donor ligand. Complexation of L increases the inhibitory strength on topoisomerase I activity. Complex 1 could fully inhibit topoisomerase I activity at 250 μM, while L did not show any inhibitory effect on topoisomerase I activity. In addition, L and complex 1 could cleave pBR322 DNA in a concentration and time dependent profile. Surprisingly, L has better DNA cleavage activity than complex 1. The cleavage of DNA by complex 1 is altered in the presence of hydrogen peroxide. Furthermore, L and complex 1 are mildly cytotoxic towards human ovarian cancer A2780 and hepatocellular carcinoma HepG2.
    Matched MeSH terms: Hydrogen Bonding/drug effects
  16. Yehye WA, Abdul Rahman N, Alhadi AA, Khaledi H, Weng NS, Ariffin A
    Molecules, 2012 Jun 25;17(7):7645-65.
    PMID: 22732881 DOI: 10.3390/molecules17077645
    A computer-aided predictions of antioxidant activities were performed with the Prediction Activity Spectra of Substances (PASS) program. Antioxidant activity of compounds 1, 3, 4 and 5 were studied using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and lipid peroxidation assays to verify the predictions obtained by the PASS program. Compounds 3 and 5 showed more inhibition of DPPH stable free radical at 10⁻⁴ M than the well-known standard antioxidant, butylated hydroxytoluene (BHT). Compound 5 exhibited promising in vitro inhibition of Fe²⁺-induced lipid peroxidation of the essential egg yolk as a lipid-rich medium (83.99%, IC₅₀ 16.07 ± 3.51 μM/mL) compared to α-tocopherol (α-TOH, 84.6%, IC₅₀ 5.6 ± 1.09 μM/mL). The parameters for drug-likeness of these BHT analogues were also evaluated according to the Lipinski’s “rule-of-five” (RO5). All the BHT analogues were found to violate one of the Lipinski’s parameters (LogP > 5), even though they have been found to be soluble in protic solvents. The predictive polar surface area (PSA) and absorption percent (% ABS) data allow us to conclude that they could have a good capacity for penetrating cell membranes. Therefore, one can propose these new multipotent antioxidants (MPAOs) as potential antioxidants for tackling oxidative stress and lipid peroxidation processes.
    Matched MeSH terms: Hydrogen Bonding/drug effects
  17. Mohamed Saat A, Johan MR
    ScientificWorldJournal, 2014;2014:439839.
    PMID: 25506069 DOI: 10.1155/2014/439839
    Partially phosphorylated polyvinyl alcohol (PPVA) with aluminum phosphate (ALPO4) composites was synthesized by solution casting technique to produce (PPVA)(100-y) - (ALPO4)(y) (y = 0, 1, and 2). The surface structure and thermal properties of the films were characterized using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The results showed that the films have higher thermal stability with strong bonding between PPVA and ALPO4.
    Matched MeSH terms: Hydrogen Bonding
  18. Kianfar AH, Kamil Mahmood WA, Dinari M, Farrokhpour H, Enteshari M, Azarian MH
    Spectrochim Acta A Mol Biomol Spectrosc, 2015 Feb 05;136 Pt C:1582-92.
    PMID: 25459719 DOI: 10.1016/j.saa.2014.10.051
    The [Co(naphophen)(PPh3)(OH2)]ClO4 and [Co(naphophen)(PBu3)(OH2)]BF4 (where naphophen=bis(naphthaldehyde)1,2-phenylenediimine) complexes were synthesized and chracterized by FT-IR, UV-Vis, (1)H NMR, (13)C NMR spectroscopy and elemental analysis techniques. The coordination geometry of the synthesized complexes were determined by X-ray crystallography. Cobalt (III) complexes have six-coordinated pseudo-octahedral geometry in which the O(1), O(2), N(1) and N(2) atoms of the Schiff base forms the equatorial plane. These complexes showed a dimeric structure via hydrogen bonding between the phenolate oxygen and the hydrogens of the coordinated H2O molecule. The theoretical calculations were also performed to optimize the structure of the complexes in the gas phase to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. The synthesized complexes were incorporated onto the Montmorillonite-K10 nanoclay via simple ion-exchange reaction. The structure and morphology of the obtained nanohybrids were identified by FT-IR, XRD, TGA/DTA, SEM and TEM techniques. Based on the XRD results of the new nanohybrid materials, the Schiff base complexes were intercalated in the interlayer spaces of clay. SEM and TEM micrographs of the clay/complex shows that the resulting hybrid nanomaterials has layer structures.
    Matched MeSH terms: Hydrogen Bonding
  19. Sudi IY, Hamid AA, Shamsir MS, Jamaluddin H, Wahab RA, Huyop F
    Biotechnology, biotechnological equipment, 2014 Jul 04;28(4):608-615.
    PMID: 26740767
    Halogenated compounds are recalcitrant environmental pollutants prevalent in agricultural fields, waste waters and industrial by-products, but they can be degraded by dehalogenase-containing microbes. Notably, 2-haloalkanoic acid dehalogenases are employed to resolve optically active chloropropionates, as exemplified by the d-specific dehalogenase from Rhizobium sp. RCI (DehD), which acts on d-2-chloropropionate but not on its l-enantiomer. The catalytic residues of this dehalogenase responsible for its affinity toward d-2-chloropropionate have not been experimentally determined, although its three-dimensional crystal structure has been solved. For this study, we performed in silico docking and molecular dynamic simulations of complexes formed by this dehalogenase and d- or l-2-chloropropionate. Arg134 of the enzyme plays the key role in the stereospecific binding and Arg16 is in a position that would allow it to activate a water molecule for hydrolytic attack on the d-2-chloropropionate chiral carbon for release of the halide ion to yield l-2-hydroxypropionate. We propose that within the DehD active site, the NH group of Arg134 can form a hydrogen bond with the carboxylate of d-2-chloropropionate with a strength of ∼4 kcal/mol that may act as an acid-base catalyst, whereas, when l-2-chloropropionate is present, this bond cannot be formed. The significance of the present work is vital for rational design of this dehalogenase in order to confirm the involvement of Arg16 and Arg134 residues implicated in hydrolysis and binding of d-2-chloropropionate in the active site of d-specific dehalogenase from Rhizobium sp. RC1.
    Matched MeSH terms: Hydrogen Bonding
  20. Velayutham TS, Ng BK, Gan WC, Abd Majid WH, Hashim R, Zahid NI, et al.
    J Chem Phys, 2014 Aug 28;141(8):085101.
    PMID: 25173043 DOI: 10.1063/1.4893873
    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10(-2)-10(6) Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.
    Matched MeSH terms: Hydrogen Bonding
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links