Displaying publications 81 - 89 of 89 in total

Abstract:
Sort:
  1. Nair RS, Billa N, Leong CO, Morris AP
    Pharm Dev Technol, 2021 Feb;26(2):243-251.
    PMID: 33274672 DOI: 10.1080/10837450.2020.1860087
    Tocotrienol (TRF) ethosomes were developed and evaluated in vitro for potential transdermal delivery against melanoma. The optimised TRF ethosomal size ranged between 64.9 ± 2.2 nm to 79.6 ± 3.9 nm and zeta potential (ZP) between -53.3 mV to -62.0 ± 2.6 mV. Characterisation of the ethosomes by ATR-FTIR indicated the successful formation of TRF-ethosomes. Scanning electron microscopy (SEM) images demonstrated the spherical shape of ethosomes, and the entrapment efficiencies of all the formulations were above 66%. In vitro permeation studies using full-thickness human skin showed that the permeation of gamma-T3 from the TRF ethosomal formulations was significantly higher (p 
    Matched MeSH terms: Liposomes
  2. Jarrar QB, Hakim MN, Zakaria ZA, Cheema MS, Moshawih S
    Ultrastruct Pathol, 2020 Jan 02;44(1):130-140.
    PMID: 31967489 DOI: 10.1080/01913123.2020.1717705
    Mefenamic acid (MFA) treatment is associated with a number of cellular effects that potentiate the incidence of renal toxicity. The aim of this study is to investigate the potential ultrastructural alterations induced by various preparations of MFA (free MFA, MFA-Tween 80 liposomes, and MFA-DDC liposomes) on the renal tissues. Sprague-Dawley rats were subjected to a daily dose of MFA preparations for 28 days. Renal biopsies from all groups of rats under study were processed for transmission electron microscopic examination. The findings revealed that MFA preparations induced various ultrastructural alterations including mitochondrial injury, nuclear and lysosomal alterations, tubular cells steatosis, apoptotic activity, autophagy, and nucleophagy. These alterations were more clear in rats received free MFA, and MFA-Tween 80 liposomes than those received MFA-DDC liposomes. It is concluded that MFA-DDC liposomes are less potential to induce renal damage than free MFA and MFA-Tween 80 liposomes. Thus, MFA-DDC liposomes may offer an advantage of safe drug delivery.
    Matched MeSH terms: Liposomes
  3. Gulati N, Chellappan DK, MacLoughlin R, Dua K, Dureja H
    Life Sci, 2021 Nov 15;285:119969.
    PMID: 34547339 DOI: 10.1016/j.lfs.2021.119969
    Inflammatory lung diseases related morbidity and mortality impose a significant financial burden. Inflammation is a hallmark of many diseases of the respiratory system which is directly or indirectly linked to adverse health conditions, air pollution, rapid lifestyle changes, and regular outbreaks of microbial infections. The unique anatomical and physiological features of the lungs make them an ideal target organ in the treatment of inflammatory respiratory disease and with the help of inhaled therapy lungs can be targeted directly. The principal objective of this review is to present the comprehensive role of inhaled nano-based therapeutics such as liposomes, niosomes, nanoparticles, nanoemulsion, nanosuspension, and exosomes in the treatment and management of inflammatory respiratory diseases. Inhaled nanomedicines provide targeted diagnosis and treatment, improved drug solubility and distribution, prevent first-pass hepatic metabolism, improved patient compliance, and reduced drug side effects. They overcome several biological barriers in the human body and provide immediate, and quick-onset of action. Future research should be focused on improving the therapeutic efficiency of inhaled nanocarriers and to carry out in-depth mechanistic studies to translate current scientific knowledge for the efficient management of inflammatory lung diseases with minimal or no toxicity.
    Matched MeSH terms: Liposomes
  4. Tan DM, Fu JY, Wong FS, Er HM, Chen YS, Nesaretnam K
    Nanomedicine (Lond), 2017 Oct;12(20):2487-2502.
    PMID: 28972460 DOI: 10.2217/nnm-2017-0182
    AIM: To develop 6-O-palmitoyl-ascorbic acid-based niosomes targeted to transferrin receptor for intravenous administration of tocotrienols (T3) in breast cancer.

    MATERIALS & METHODS: Niosomes were prepared using film hydration and ultrasonication methods. Transferrin was coupled to the surface of niosomes via chemical linker. Nanovesicles were characterized for size, zeta potential, morphology, stability and biological efficacy.

    RESULTS: When evaluated in MDA-MB-231 cells, entrapment of T3 in niosomes caused 1.5-fold reduction in IC50 value compared with nonformulated T3. In vivo, the average tumor volume of mice treated with tumor-targeted niosomes was 12-fold lower than that of untreated group, accompanied by marked downregulation of three genes involved in metastasis.

    CONCLUSION: Findings suggested that tumor-targeted niosomes served as promising delivery system for T3 in cancer therapy.

    Matched MeSH terms: Liposomes/chemistry*
  5. Mahmood S, Mandal UK, Chatterjee B
    Int J Pharm, 2018 May 05;542(1-2):36-46.
    PMID: 29501737 DOI: 10.1016/j.ijpharm.2018.02.044
    Raloxifene HCl belongs to a class of selective estrogen receptor modulators (SERMs) which is used for the management of breast cancer. The major problem reported with raloxifene is its poor bioavailability which is only up to 2%. The main objective of the present work was to formulate raloxifene loaded ethosomal preparation for transdermal application and compare it with an oral formulation of the drug. Five ethosomal formulations with different concentrations of ethanol and a conventional liposomes formulation were prepared by rotary evaporation method. The prepared systems were characterised by high resolution transmission electron microscopy (HRTEM), force emission electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and 31P NMR study. All these advanced characterization study established that the ethosome formulation was well defined by its size, shape and its bilayer formation. Transdermal flux of the optimized ethosome formulation was 22.14 ± 0.83 µg/ml/cm2 which was 21 times higher when compared to the conventional liposomes. Confocal microscopy study revealed an enhanced permeation of coumarin-6 dye loaded ethosomes to much deeper layers of skin when compared with conventional liposomes. The gel was found to be pseudoplastic with elastic behaviour. In-vivo studies on rats showed a higher bioavailability of RXL (157% times) for ethosomal formulation when compared with the oral formulation. In conclusion, RXL loaded ethosomal formulation via transdermal route showed superior drug delivery properties as compared to oral formulation.
    Matched MeSH terms: Liposomes
  6. Ichimizu S, Watanabe H, Maeda H, Hamasaki K, Ikegami K, Chuang VTG, et al.
    J Control Release, 2019 06 28;304:156-163.
    PMID: 31082432 DOI: 10.1016/j.jconrel.2019.05.015
    We recently developed a cell-penetrating drug carrier composed of albumin (HSA) combined with palmitoyl-cyclic-(D-Arg)12. While it is possible that the palmitoyl-cyclic-(D-Arg)12/HSA enters the cell mainly via macropinocytosis, the mechanism responsible for the induction of macropinocytosis and endosomal escape remain unknown. We report herein that palmitoyl-cyclic-(D-Arg)12/HSA might interact with heparan sulfate proteoglycan and the chemokine receptor CXCR4 followed by multiple activations of the PKC/PI3K/JNK/mTOR signaling pathways to induce macropinocytosis. This result was further confirmed by a co-treatment with 70 kDa dextran, a macropinocytosis marker. Using liposomes that mimic endosomes, the leakage of 5,6-carboxyfluorescein from liposome was observed in the presence of palmitoyl-cyclic-(D-Arg)12/HSA only in the case of the anionic late endosome-like liposomes but not the neutral early endosome-like liposomes. Heparin largely inhibited this leakage, suggesting the importance of electrostatic interactions between palmitoyl-cyclic-(D-Arg)12/HSA and the late-endosomal membrane. Immunofluorescence staining and Western blotting data indicated that the intact HSA could be transferred from endosomes to the cytosol. These collective data suggest that the palmitoyl-cyclic-(D-Arg)12/HSA is internalized via macropinocytosis and intact HSA is released from the late endosomes to the cytoplasm before the endosomes fuse with lysosomes. Palmitoyl-cyclic-(D-Arg)12/HSA not only functions as an intracellular drug delivery carrier but also as an inducer of macropinocytosis.
    Matched MeSH terms: Liposomes
  7. Ling SS, Magosso E, Khan NA, Yuen KH, Barker SA
    Drug Dev Ind Pharm, 2006 Mar;32(3):335-45.
    PMID: 16556538
    A liposome system was evaluated for oral delivery of a poorly bioavailable hydrophilic drug. The system was prepared from proliposome, which consisted of negatively charged phosphatidylcholine, whereas cefotaxime was chosen as the model drug. An in vivo study was carried out on nine rats according to a three-way crossover design to compare the oral bioavailability of cefotaxime from the liposomal formulation with that of an aqueous drug solution and a physical mixture of cefotaxime with blank liposomes. The results indicated that the extent of bioavailability of cefotaxime was increased approximately 2.7 and 2.3 times compared with that of the aqueous solution and the physical mixture, respectively. In a separate study, simultaneous determination of cefotaxime in intestinal lymph (collected from the mesenteric lymph duct) and in plasma (collected from the tail vein) revealed that its concentration was consistently higher in the lymph than in the plasma when administered via the liposomal formulation, whereas the reverse was observed with the aqueous solution. Thus, the results indicated that the liposomes system has the potential of increasing the oral bioavailability of poorly bioavailable hydrophilic drugs and also promote their lymphatic transport in the intestinal lymph.
    Matched MeSH terms: Liposomes
  8. Iezhitsa I, Agarwal R, Saad SD, Zakaria FK, Agarwal P, Krasilnikova A, et al.
    Mol Vis, 2016;22:734-47.
    PMID: 27440992
    PURPOSE: Increased lenticular oxidative stress and altered calcium/magnesium (Ca/Mg) homeostasis underlie cataractogenesis. We developed a liposomal formulation of magnesium taurate (MgT) and studied its effects on Ca/Mg homeostasis and lenticular oxidative and nitrosative stress in galactose-fed rats.

    METHODS: The galactose-fed rats were topically treated with liposomal MgT (LMgT), liposomal taurine (LTau), or corresponding vehicles twice daily for 28 days with weekly anterior segment imaging. At the end of the experimental period, the lenses were removed and subjected to analysis for oxidative and nitrosative stress, Ca and Mg levels, ATP content, Ca(2+)-ATPase, Na(+),K(+)-ATPase, and calpain II activities.

    RESULTS: The LTau and LMgT groups showed significantly lower opacity index values at all time points compared to the corresponding vehicle groups (p<0.001). However, the opacity index in the LMgT group was lower than that in the LTau group (p<0.05). Significantly reduced oxidative and nitrosative stress was observed in the LTau and LMgT groups. The lens Ca/Mg ratio in LMgT group was decreased by 1.15 times compared to that in the LVh group. Calpain II activity in the LMgT group was decreased by 13% compared to the LVh group. The ATP level and Na(+),K(+)-ATPase and Ca(2+)-ATPase activities were significantly increased in the LMgT group compared to the LVh group (p<0.05).

    CONCLUSIONS: Topical liposomal MgT delays cataractogenesis in galactose-fed rats by maintaining the lens mineral homeostasis and reducing lenticular oxidative and nitrosative stress.

    Matched MeSH terms: Liposomes
  9. Abdul Nasir NA, Agarwal R, Vasudevan S, Tripathy M, Alyautdin R, Ismail NM
    Mol Vis, 2014;20:822-35.
    PMID: 24940038
    Oxidative and nitrosative stress underlies cataractogenesis, and therefore, various antioxidants have been investigated for anticataract properties. Several vitamin E analogs have also been studied for anticataract effects due to their antioxidant properties; however, the anticataract properties of tocotrienols have not been investigated. In this study, we investigated the effects of topically applied tocotrienol on the onset and progression of cataract and lenticular oxidative and nitrosative stress in galactosemic rats.
    Matched MeSH terms: Liposomes/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links