Displaying publications 81 - 100 of 176 in total

Abstract:
Sort:
  1. Amir A, Russell B, Liew JW, Moon RW, Fong MY, Vythilingam I, et al.
    Sci Rep, 2016 Apr 21;6:24623.
    PMID: 27097521 DOI: 10.1038/srep24623
    Plasmodium knowlesi is extensively used as an important malaria model and is now recognized as an important cause of human malaria in Malaysia. The strains of P. knowlesi currently used for research were isolated many decades ago, raising concerns that they might no longer be representative of contemporary parasite populations. We derived a new P. knowlesi line (University Malaya line, UM01), from a patient admitted in Kuala Lumpur, Malaysia, and compared it with a human-adapted laboratory line (A1-H.1) derived from the P. knowlesi H strain. The UM01 and A1-H.1 lines readily invade human and macaque (Macaca fascicularis) normocytes with a preference for reticulocytes. Whereas invasion of human red blood cells was dependent on the presence of the Duffy antigen/receptor for chemokines (DARC) for both parasite lines, this was not the case for macaque red blood cells. Nonetheless, differences in invasion efficiency, gametocyte production and the length of the asexual cycle were noted between the two lines. It would be judicious to isolate and characterise numerous P. knowlesi lines for use in future experimental investigations of this zoonotic species.
    Matched MeSH terms: Malaria/parasitology*
  2. Sonaimuthu P, Cheong FW, Chin LC, Mahmud R, Fong MY, Lau YL
    Exp Parasitol, 2015 Jun;153:118-22.
    PMID: 25812552 DOI: 10.1016/j.exppara.2015.03.010
    Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Human infection with Plasmodium knowlesi is widely distributed in Southeast Asia. Merozoite surface protein-1₁₉ (MSP-1₁₉), which plays an important role in protective immunity against asexual blood stage malaria parasites, appears as a leading immunogenic antigen of Plasmodium sp. We evaluated the sensitivity and specificity of recombinant P. knowlesi MSP-1₁₉ (rMSP-1₁₉) for detection of malarial infection. rMSP-1₁₉ was expressed in Escherichia coli expression system and the purified rMSP-1₁₉ was evaluated with malaria, non-malaria and healthy human serum samples (n = 215) in immunoblots. The sensitivity of rMSP-1₁₉ for detection of P. knowlesi, Plasmodium falciparum, Plasmodium  vivax and Plasmodium  ovale infection was 95.5%, 75.0%, 85.7% and 100%, respectively. rMSP-1₁₉ did not react with all the non-malaria and healthy donor sera, which represents 100% specificity. The rMSP-1₁₉ could be used as a potential antigen in serodiagnosis of malarial infection in humans.
    Matched MeSH terms: Malaria/parasitology
  3. Amir A, Shahari S, Liew JWK, de Silva JR, Khan MB, Lai MY, et al.
    Acta Trop, 2020 Nov;211:105596.
    PMID: 32589995 DOI: 10.1016/j.actatropica.2020.105596
    Zoonotic cases of Plasmodium knowlesi account for most malaria cases in Malaysia, and humans infected with P. cynomolgi, another parasite of macaques have recently been reported in Sarawak. To date the epidemiology of malaria in its natural Macaca reservoir hosts remains little investigated. In this study we surveyed the prevalence of simian malaria in wild macaques of three states in Peninsular Malaysia, namely Pahang, Perak and Johor using blood samples from 103 wild macaques (collected by the Department of Wildlife and National Parks Peninsular Malaysia) subjected to microscopic examination and nested PCR targeting the Plasmodium small subunit ribosomal RNA gene. As expected, PCR analysis yielded significantly higher prevalence (64/103) as compared to microscopic examination (27/103). No relationship between the age and/or sex of the macaques with the parasitaemia and the Plasmodium species infecting the macaques could be identified. Wild macaques in Pahang had the highest prevalence of Plasmodium parasites (89.7%), followed by those of Perak (69.2%) and Johor (28.9%). Plasmodium inui and P. cynomolgi were the two most prevalent species infecting the macaques from all three states. Half of the macaques (33/64) harboured two or more Plasmodium species. These data provide a baseline survey, which should be extended by further longitudinal investigations that should be associated with studies on the bionomics of the anopheline vectors. This information will allow an accurate evaluation of the risk of zoonotic transmission to humans, and to elaborate effective strategies to control simian malaria.
    Matched MeSH terms: Malaria/parasitology
  4. Lai MY, Ooi CH, Jaimin JJ, Lau YL
    Am J Trop Med Hyg, 2020 06;102(6):1370-1372.
    PMID: 32228783 DOI: 10.4269/ajtmh.20-0001
    The incidence of zoonotic malaria, Plasmodium knowlesi, infection is increasing and now is the major cause of malaria in Malaysia. Here, we describe a WarmStart colorimetric loop-mediated isothermal amplification (LAMP) assay for the detection of Plasmodium spp. The detection limit for this assay was 10 copies/µL for P knowlesi and Plasmodium ovale and 1 copy/µL for Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae. To test clinical sensitivity and specificity, 100 microscopy-positive and 20 malaria-negative samples were used. The WarmStart colorimetric LAMP was 98% sensitive and 100% specific. Amplification products were visible for direct observation, thereby eliminating the need for post-amplification processing steps. Therefore, WarmStart colorimetric LAMP is suitable for use in resource-limited settings.
    Matched MeSH terms: Malaria/parasitology*
  5. Noordin NR, Lee PY, Mohd Bukhari FD, Fong MY, Abdul Hamid MH, Jelip J, et al.
    Am J Trop Med Hyg, 2020 09;103(3):1107-1110.
    PMID: 32618263 DOI: 10.4269/ajtmh.20-0268
    Asymptomatic and/or low-density malaria infection has been acknowledged as an obstacle to achieving a malaria-free country. This study aimed to determine the prevalence of asymptomatic and/or low-density malaria infection in previously reported malarious localities using nested PCR in four states, namely, Johor, Pahang, Kelantan, and Selangor, between June 2019 and January 2020. Blood samples (n = 585) were collected and were extracted using a QIAamp blood kit. The DNA was concentrated and subjected to nested PCR. Thin and thick blood smears were examined as well. Of the 585 samples collected, 19 were positive: 10 for Plasmodium knowlesi, eight for Plasmodium vivax, and one for Plasmodium ovale. Asymptomatic and/or low-density malaria infection is a threat to malaria elimination initiatives. Eliminating countries should develop guidance policy on the importance of low-density malaria infection which includes detection and treatment policy.
    Matched MeSH terms: Malaria/parasitology
  6. Mallepaddi PC, Lai MY, Podha S, Ooi CH, Liew JW, Polavarapu R, et al.
    Am J Trop Med Hyg, 2018 09;99(3):704-708.
    PMID: 29943720 DOI: 10.4269/ajtmh.18-0177
    The present study aims to develop a method for rapid diagnosis of malaria using loop-mediated isothermal amplification (LAMP) combined with a lateral flow device (LFD). By adding the biotin-labeled and fluorescein amidite-labeled loop primers to the LAMP reaction solution, the end product can be visualized on a LFD. The entire procedure takes approximately 42 minutes to complete, LAMP assay exhibited high sensitivity, as the detection limit was 0.01 pg/μL for all five Plasmodium species. It was demonstrated that all Plasmodium knowlesi (N = 90) and Plasmodium vivax (N = 56) were positively amplified by LAMP-LFD assay, whereas healthy donor samples (N = 8) were negative. However, not all mixed infections were positive, and other infected nonmalaria samples were negative. Loop-mediated isothermal amplification-LFD represents a robust approach with potential suitability for use in resource-constrained laboratories. We believe that LAMP-LFD has a potential to be developed as point-of-care diagnostic tool in future.
    Matched MeSH terms: Malaria/parasitology*
  7. Ng YL, Fong MY, Lau YL
    Trop Biomed, 2021 Jun 01;38(2):159-164.
    PMID: 34172705 DOI: 10.47665/tb.38.2.052
    The Plasmodium knowlesi apical membrane antigen-1 (PkAMA-1) plays an important role in the invasion of the parasite into its host erythrocyte, and it has been regarded as a potential vaccine candidate against human knowlesi malaria. This study investigates genetic diversity and natural selection of the full length PkAMA-1 of P. knowlesi clinical isolates from Peninsular Malaysia. Blood samples were collected from P. knowlesi malaria patients from Peninsular Malaysia. The PkAMA-1 gene was amplified from DNA samples using PCR, cloned into a plasmid vector and sequenced. Results showed that nucleotide diversity of the full length PkAMA-1 from Peninsular Malaysia isolates (π: 0.006) was almost similar to that of Sarawak (π: 0.005) and Sabah (π: 0.004) isolates reported in other studies. Deeper analysis revealed Domain I (π: 0.007) in the PkAMA-1 had the highest diversity as compared to Domain II (π: 0.004) and Domain III (π: 0.003). Z-test indicated negative (purifying) selection of the gene. Combined alignment analysis at the amino acid level for the Peninsular Malaysia and Sarawak PkAMA-1 sequences revealed 34 polymorphic sites. Thirty-one of these sites were dimorphic, and 3 were trimorphic. The amino acid sequences could be categorised into 31 haplotypes. In the haplotype network, PkAMA-1 from Peninsular Malaysia and Sarawak were separated into two groups.
    Matched MeSH terms: Malaria/parasitology
  8. Amir A, Cheong FW, De Silva JR, Lau YL
    Parasit Vectors, 2018 01 23;11(1):53.
    PMID: 29361963 DOI: 10.1186/s13071-018-2617-y
    Every year, millions of people are burdened with malaria. An estimated 429,000 casualties were reported in 2015, with the majority made up of children under five years old. Early and accurate diagnosis of malaria is of paramount importance to ensure appropriate administration of treatment. This minimizes the risk of parasite resistance development, reduces drug wastage and unnecessary adverse reaction to antimalarial drugs. Malaria diagnostic tools have expanded beyond the conventional microscopic examination of Giemsa-stained blood films. Contemporary and innovative techniques have emerged, mainly the rapid diagnostic tests (RDT) and other molecular diagnostic methods such as PCR, qPCR and loop-mediated isothermal amplification (LAMP). Even microscopic diagnosis has gone through a paradigm shift with the development of new techniques such as the quantitative buffy coat (QBC) method and the Partec rapid malaria test. This review explores the different diagnostic tools available for childhood malaria, each with their characteristic strengths and limitations. These tools play an important role in making an accurate malaria diagnosis to ensure that the use of anti-malaria are rationalized and that presumptive diagnosis would only be a thing of the past.
    Matched MeSH terms: Malaria/parasitology
  9. Liew J, Amir A, Chen Y, Fong MY, Razali R, Lau YL
    Clin Chim Acta, 2015 Aug 25;448:33-8.
    PMID: 26086445 DOI: 10.1016/j.cca.2015.06.006
    Autoantibodies or antibodies against self-antigens are produced either during physiological processes to maintain homeostasis or pathological process such as trauma and infection. Infection with parasites including Plasmodium has been shown to generally induce elevated self-antibody (autoantibody) levels. Plasmodium knowlesi is increasingly recognized as one of the most important emerging human malaria in Southeast Asia that can cause severe infection leading to mortality. Autoimmune-like phenomena have been hypothesized to play a role in the protective immune responses in malaria infection.
    Matched MeSH terms: Malaria/parasitology*
  10. Phang WK, Bukhari FDM, Zen LPY, Jaimin JJ, Dony JJF, Lau YL
    Parasitol Int, 2022 Apr;87:102519.
    PMID: 34800724 DOI: 10.1016/j.parint.2021.102519
    Information about Plasmodium malariae is scanty worldwide due to its "benign" nature and low infection rates. Consequently, studies on the genetic polymorphisms of P. malariae are lacking. Here, we report genetic polymorphisms of 28 P. malariae circumsporozoite protein (Pmcsp) isolates from Malaysia which were compared with those in other regions in Asia as well as those from Africa. Phylogenetic analysis revealed that most Malaysian P. malariae isolates clustered together but independently from other Asian isolates. Low nucleotide diversity was observed in Pmcsp non-repeat regions in contrast to high nucleotide diversity observed in non-repeat regions of Plasmodium knowlesi CSP gene, the current major cause of malaria in Malaysia. This study contributes to the characterisation of naturally occurring polymorphisms in the P. malariae CSP gene.
    Matched MeSH terms: Malaria/parasitology*
  11. Yusof R, Ahmed MA, Jelip J, Ngian HU, Mustakim S, Hussin HM, et al.
    Emerg Infect Dis, 2016 Aug;22(8):1371-80.
    PMID: 27433965 DOI: 10.3201/eid2208.151885
    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.
    Matched MeSH terms: Malaria/parasitology
  12. Chua CY, Lee PC, Lau TY
    J Genet, 2017 Sep;96(4):653-663.
    PMID: 28947714
    The apical membrane antigen-1 (AMA-1) of Plasmodium spp. is a merozoite surface antigen that is essential for the recognition and invasion of erythrocytes. Polymorphisms occurring in this surface antigen will cause major obstacles in developing effective malaria vaccines based on AMA-1. The objective of this study was to characterize ama1 gene in Plasmodium knowlesi isolates from Sabah. DNA was extracted from blood samples collected from Keningau, Kota Kinabalu and Kudat. The Pkama1 gene was amplified using nested PCR and subjected to bidirectional sequencing. Analysis of DNA sequence revealed that most of the nucleotide polymorphisms were synonymous and concentrated in domain I of PkAMA-1. Forteen haplotypes were identified based on amino acid variations and haplotype K5 was the most common haplotype. dN/dS ratios implied that purifying selection was prevalent in Pkama1 gene. Fu and Li's D and F values further provided evidence of negative selection acting on domain II of Pkama1. Lownucleotide diversitywas also detected for the Pkama1 sequences,which is similar to reports on Pkama1 from Peninsular Malaysia and Sarawak. The presence of purifying selection and low nucleotide diversity indicated that domain II of Pkama1 can be used as a target for vaccine development.
    Matched MeSH terms: Malaria/parasitology*
  13. Melo JO, Padilha MAO, Barbosa RTA, Alonso WJ, Vittor AY, Laporta GZ
    Trop Biomed, 2020 Jun;37(2):513-535.
    PMID: 33235398
    After a centenary fight against malaria, Brazil has seen an opportunity for change with the proposal of the malaria elimination policy set by the Brazilian government, in line with malaria elimination policies in other Latin American countries. Brazilian malaria experts regard eliminating malaria by 2030 to be within reach. Herein we evaluated the likelihood that malaria elimination can be accomplished in Brazil through systematic review of the literature on malaria elimination in Brazil and epidemiological analysis. Fifty-two articles referring to malaria eradication/elimination in Brazil were analyzed to identify challenges and technological breakthroughs for controlling malaria. Monthly deaths (1979-2016) and monthly severe malaria cases (1998-2018) were analyzed according to age groups, geographic region and parasite species. As a result, we observed that the declining malaria burden was mostly attributable to a decline in Plasmodium falciparum-malaria. At the same time, the proportional increase of Plasmodium vivax-malaria in comparison with P. falciparum-malaria was notable. This niche replacement mechanism was discussed in the reviewed literature. In addition, the challenges to P. vivax-malaria elimination outnumbered the available technological breakthroughs. Although accumulated and basic information exists on mosquito vector biology, the lack of specific knowledge about mosquito vector taxonomy and ecology may hamper current attempts at stopping malaria in the country. An impressive reduction in malaria hospitalizations and mortality was seen in Brazil in the past 3 decades. Eliminating malaria deaths in children less than 5 years and P. falciparum severe cases may be achievable goals under the current malaria policy until 2030. However, eliminating P. vivax malaria transmission and morbidity seems unattainable with the available tools. Therefore, complete malaria elimination in Brazil in the near future is unlikely.
    Matched MeSH terms: Malaria/parasitology
  14. Musa MI, Shohaimi S, Hashim NR, Krishnarajah I
    Geospat Health, 2012 Nov;7(1):27-36.
    PMID: 23242678
    Malaria remains a major health problem in Sudan. With a population exceeding 39 million, there are around 7.5 million cases and 35,000 deaths every year. The predicted distribution of malaria derived from climate factors such as maximum and minimum temperatures, rainfall and relative humidity was compared with the actual number of malaria cases in Sudan for the period 2004 to 2010. The predictive calculations were done by fuzzy logic suitability (FLS) applied to the numerical distribution of malaria transmission based on the life cycle characteristics of the Anopheles mosquito accounting for the impact of climate factors on malaria transmission. This information is visualized as a series of maps (presented in video format) using a geographical information systems (GIS) approach. The climate factors were found to be suitable for malaria transmission in the period of May to October, whereas the actual case rates of malaria were high from June to November indicating a positive correlation. While comparisons between the prediction model for June and the case rate model for July did not show a high degree of association (18%), the results later in the year were better, reaching the highest level (55%) for October prediction and November case rate.
    Matched MeSH terms: Malaria/parasitology
  15. Fatih FA, Staines HM, Siner A, Ahmed MA, Woon LC, Pasini EM, et al.
    Malar J, 2013;12:425.
    PMID: 24245918 DOI: 10.1186/1475-2875-12-425
    Evidence suggests that Plasmodium knowlesi malaria in Sarawak, Malaysian Borneo remains zoonotic, meaning anti-malarial drug resistance is unlikely to have developed in the absence of drug selection pressure. Therefore, adequate response to available anti-malarial treatments is assumed.
    Matched MeSH terms: Malaria/parasitology*
  16. Kagaya W, Gitaka J, Chan CW, Kongere J, Md Idris Z, Deng C, et al.
    Sci Rep, 2019 12 13;9(1):19060.
    PMID: 31836757 DOI: 10.1038/s41598-019-55437-8
    Although WHO recommends mass drug administration (MDA) for malaria elimination, further evidence is required for understanding the obstacles for the optimum implementation of MDA. Just before the long rain in 2016, two rounds of MDA with artemisinin/piperaquine (Artequick) and low-dose primaquine were conducted with a 35-day interval for the entire population of Ngodhe Island (~500 inhabitants) in Lake Victoria, Kenya, which is surrounded by areas with moderate and high transmission. With approximately 90% compliance, Plasmodium prevalence decreased from 3% to 0% by microscopy and from 10% to 2% by PCR. However, prevalence rebounded to 9% by PCR two months after conclusion of MDA. Besides the remained local transmission, parasite importation caused by human movement likely contributed to the resurgence. Analyses of 419 arrivals to Ngodhe between July 2016 and September 2017 revealed Plasmodium prevalence of 4.6% and 16.0% by microscopy and PCR, respectively. Risk factors for infection among arrivals included age (0 to 5 and 11 to 15 years), and travelers from Siaya County, located to the north of Ngodhe Island. Parasite importation caused by human movement is one of major obstacles to sustain malaria elimination, suggesting the importance of cross-regional initiatives together with local vector control.
    Matched MeSH terms: Malaria/parasitology
  17. Putaporntip C, Hongsrimuang T, Seethamchai S, Kobasa T, Limkittikul K, Cui L, et al.
    J Infect Dis, 2009 Apr 15;199(8):1143-50.
    PMID: 19284284 DOI: 10.1086/597414
    BACKGROUND: A case of human infection with Plasmodium knowlesi has been recently discovered in Thailand. To investigate the prevalence of this malaria species, a molecular-based survey was performed.

    METHODS: Blood samples from 1874 patients were tested for Plasmodium species by microscopy and nested polymerase chain reaction. P. knowlesi was characterized by sequencing the merozoite surface protein 1 gene (msp-1).

    RESULTS: Of all Plasmodium species identified, P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi contributed 43.52%, 68.08%, 1.37%, 1.03%, and 0.57%, respectively. Mixed-species infections were more common in northwestern and southwestern regions bordering Myanmar (23%-24%) than in eastern and southern areas (3%-5%). In northwestern and southwestern regions, mixed-species infections had a significantly higher prevalence in dry than in rainy seasons (P < .001). P. knowlesi was found in 10 patients, mostly from southern and southwestern areas-9 were coinfected with either P. falciparum or P. vivax. Most of the P. knowlesi Thai isolates were more closely related to isolates from macaques than to isolates from Sarawak patients. The msp-1 sequences of isolates from the same area of endemicity differed and possessed novel sequences, indicating genetic polymorphism in P. knowlesi infecting humans.

    CONCLUSIONS: This survey highlights the widespread distribution of P. knowlesi in Thailand, albeit at low prevalence and mostly occurring as cryptic infections.

    Matched MeSH terms: Malaria/parasitology*
  18. Kantele A, Jokiranta TS
    Clin Infect Dis, 2011 Jun;52(11):1356-62.
    PMID: 21596677 DOI: 10.1093/cid/cir180
    Human malaria has been known to be caused by 4 Plasmodium species, with Plasmodium falciparum causing the most-severe disease. Recently, numerous reports have described human malaria caused by a fifth Plasmodium species, Plasmodium knowlesi, which usually infects macaque monkeys. Hundreds of human cases have been reported from Malaysia, several cases have been reported in other Southeast Asian countries, and a few cases have been reported in travelers visiting these areas. Similarly to P. falciparum, P. knowlesi can cause severe and even fatal cases of disease that are more severe than those caused by the other Plasmodium species. Polymerase chain reaction is of value for diagnosis because P. knowlesi infection is easily misdiagnosed as less dangerous Plasmodium malariae infection with conventional microscopy. P. knowlesi infection should be suspected in patients who are infected with malaria in Southeast Asia. If human-mosquito-human transmission were to occur, the disease could spread to new areas where the mosquito vectors live, such as the popular tourist areas in western India.
    Matched MeSH terms: Malaria/parasitology*
  19. Kantele A, Marti H, Felger I, Müller D, Jokiranta TS
    Emerg Infect Dis, 2008 Sep;14(9):1434-6.
    PMID: 18760013 DOI: 10.3201/eid1409.080170
    In 2007, a Finnish traveler was infected in Peninsular Malaysia with Plasmodium knowlesi, a parasite that usually causes malaria in monkeys. P. knowlesi has established itself as the fifth Plasmodium species that can cause human malaria. The disease is potentially life-threatening in humans; clinicians and laboratory personnel should become more aware of this pathogen in travelers.
    Matched MeSH terms: Malaria/parasitology*
  20. Kantele A, Jokiranta S
    Duodecim, 2010;126(4):427-34.
    PMID: 20486493
    Four species have been known to bring on human malaria, the most severe disease being caused by Plasmodium falciparum. In 2007, after returning from Malaysia, a Finnish tourist was found to be infected with a fifth Plasmodium species, P. knowlesi which usually infects macaques. Over the past few years, hundreds of human cases have been found in Malaysia. The clinical disease caused by P. knowlesi appears less severe than P. falciparum infection, but more severe than infection with other malaria-causing species. Diagnosis is based both on PCR and microscopy. P. knowlesi is currently. considered as the fifth species causing malaria in humans.
    Matched MeSH terms: Malaria/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links