Displaying publications 81 - 100 of 260 in total

Abstract:
Sort:
  1. Rahardiyan D, Moko EM, Tan JS, Lee CK
    Enzyme Microb Technol, 2023 Aug;168:110260.
    PMID: 37224591 DOI: 10.1016/j.enzmictec.2023.110260
    Plastic throughout the years is now one of the biggest world commodities and also the largest pollution to have an environmental impact, accumulating in landfills and also leaching into water systems and oceans. Especially with the shift to single-use disposable plastic, evermore positions plastics as the number one novel entity that pollutes the earth. This shift is also consistent in the food packaging industry. Managing plastic waste is still an issue at large, while the process of pyrolysis incineration still requires an obscene amount of energy that also does not resolve the problems with its environmental impact, the cost of mechanical-chemical degradation even outweighs the cost of producing the materials, and biodegradation process is a very slow and long process. Converting to bioplastics is one of the potential solutions to the global plastic issue. This review covers the potentials, limitations, challenges, progress and advancements of bioplastics, especially thermoplastic starch (starch-based bioplastic) in their efforts to replace petroleum plastics in food packaging and smart food packaging, especially for single-use (disposable) food packaging.
    Matched MeSH terms: Starch
  2. R S, M S M, E M S, K O NA, A A S, K K
    Carbohydr Polym, 2014 Feb 15;102:962-9.
    PMID: 24507370 DOI: 10.1016/j.carbpol.2013.10.031
    The production of pullulanase by Bacillus flavothermus KWF-1 in batch and fed batch culture were compared using 2L bioreactor. In batch culture, 0.0803 U/mL of pullulanase activity with specific activity of 0.0213 U/mg was produced by controlling the agitation speed and temperature at 200 rpm and 50 °C, respectively. Fed batch production was studied by feeding the culture with different sago starch concentrations in various feeding modes for enhanced pullulanase production. Exponential feeding mode at dilution rate of 0.01/h was the preeminent strategy for enhanced pullulanase production of 0.1710 U/mL with specific activity of 0.066 U/mg. It had shown an increment of pullulanase production and specific activity by 2.1 and 3.1-fold, respectively when compared to batch culture. Increment of pullulanase activity in exponential feeding mode improved hydrolyzation of sago starch into maltotriose and panose by 4.5 and 2.5-fold respectively compared to batch system.
    Matched MeSH terms: Starch/metabolism*
  3. Prasankok P, Ota H, Toda M, Panha S
    Zoolog Sci, 2007 Feb;24(2):189-97.
    PMID: 17409732
    We examined allozyme variation in two camaenid tree snails, Amphidromus atricallosus and A. inversus, across two principal regions of Thailand and from Singapore, plus for A. inversus, one site in peninsular Malaysia. Using horizontal starch gel electrophoresis, 13 allozyme loci (11 polymorphic) were screened for A. atricallosus and 18 (5 polymorphic) for A. inversus. Heterozygosity was higher in A. atricallosus (Hexp=0.018-0.201, mean=0.085) than in A. inversus (Hexp=0-0.023, mean= 0.002). Genetic heterogeneity among samples was higher in A. inversus (Fst=0.965) than in A. atricallosus (Fst=0.781). Within A. atricallosus, populations were more differentiated in southern Thailand (Fst=0.551) than in eastern Thailand (Fst=0.144). The high Fst and low Hexp in populations of A. inversus suggest that this species is likely to have experienced a series of strong bottlenecks, perhaps occurring chiefly on offshore continental-shelf islands. The low Fst values of A. atricallosus in eastern Thailand suggest frequent gene flows among populations in this region. The southern and eastern samples of A. atricallosus exhibited fixed allele differences at four loci and great genetic distance (Nei's D=0.485-0.946), suggesting that these two samples may actually represent, or else be evolving into, separate species.
    Matched MeSH terms: Electrophoresis, Starch Gel
  4. Othman SH, Othman NFL, Shapi'i RA, Ariffin SH, Yunos KFM
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513664 DOI: 10.3390/polym13030390
    This work aims to develop corn starch/chitosan nanoparticles/thymol (CS/CNP/Thy) bio-nanocomposite films as potential food packaging materials that can enhance the shelf life of food. CS/CNP/Thy bio-nanocomposite films were prepared by the addition of different concentrations of thymol (0, 1.5, 3.0, 4.5 w/w%) using a solvent casting method. The resulting films were characterized in terms of optical, mechanical, and water vapor permeability (WVP) properties. The addition of thymol was found to reduce the tensile strength (TS), elongation at break (EAB), and Young's modulus (YM) of the films. Generally, the increment in the concentration of thymol did not significantly affect the TS, EAB, and YM values. The addition of 1.5 w/w% thymol increased the WVP of the films but the WVP reduced with the increase in thymol concentrations. CS/CNP/Thy-3% bio-nanocomposite films demonstrated the potential to lengthen the shelf life of cherry tomatoes packed with the films, whereby the cherry tomatoes exhibited no significant changes in firmness and the lowest weight loss. In addition, no mold growth was observed on the sliced cherry tomatoes that were in direct contact with the films during 7 days of storage, proving the promising application of the films as active food packaging materials.
    Matched MeSH terms: Starch
  5. Othman SH, Shapi'i RA, Ronzi NDA
    Carbohydr Polym, 2024 Apr 01;329:121735.
    PMID: 38286535 DOI: 10.1016/j.carbpol.2023.121735
    Starch biopolymer films incorporated with chitosan nanoparticles (CNP) or starch/CNP films are promising alternatives to non-degradable food packaging materials. The films can be utilized for active food packaging applications because CNP exhibits antimicrobial and antioxidant properties, which can improve food shelf-life. Nonetheless, knowledge of the effects of CNP inclusion on the properties of starch films is not fully elucidated. This paper reviews the influences of various concentrations of CNP, sizes of CNP, and other additives on the mechanical, thermal, barrier, antimicrobial, antioxidant, biodegradability, and cytotoxicity properties of starch/CNP films as well as the mechanisms involved in relation to food packaging applications. The usage of starch/CNP films for active food packaging can help to reduce environmental issues and contribute to food safety and security.
    Matched MeSH terms: Starch
  6. Ooi JS, Ramzisham AR, Zamrin MD
    Asian Cardiovasc Thorac Ann, 2009 Aug;17(4):368-72.
    PMID: 19713332 DOI: 10.1177/0218492309338101
    The aim of this study was to compare 6% hydroxyethyl starch 130/0.4 with 4% succinylated gelatin for priming the cardiopulmonary bypass circuit and as volume replacement in patients undergoing coronary artery bypass, in terms of postoperative bleeding, blood transfusion requirements, renal function, and outcome after surgery. Forty-five patients received 6% hydroxyethyl starch 130/0.4 (Voluven) and another 45 were given 4% succinylated gelatin (Gelofusine) as the priming solution for the cardiopulmonary bypass circuit as well as for volume replacement. Postoperative bleeding was quantified from the hourly chest drainage in the first 4 h and at 24 h postoperatively. The baseline characteristics of both groups were similar. In the hydroxyethyl starch group, the total amount of colloid used was 1.9 +/- 1.0 L, while the gelatin group had 2.0 +/- 0.7 L. There was no significant difference in hourly chest drainage between groups. Blood transfusion requirements, estimated glomerular filtration rate, extubation time, intensive care unit and hospital stay were similar in both groups. It was concluded that 6% hydroxyethyl starch 130/0.4 is a safe alternative colloid for priming the cardiopulmonary bypass circuit and volume replacement in patients undergoing coronary artery bypass surgery.
    Matched MeSH terms: Hydroxyethyl Starch Derivatives/adverse effects*
  7. Olaiya NG, Surya I, Oke PK, Rizal S, Sadiku ER, Ray SS, et al.
    Polymers (Basel), 2019 Oct 11;11(10).
    PMID: 31614623 DOI: 10.3390/polym11101656
    This paper presents a comparison on the effects of blending chitin and/or starch with poly(lactic acid) (PLA). Three sets of composites (PLA-chitin, PLA-starch and PLA-chitin-starch) with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount of the chitin and starch incorporated ranges from 2% to 8%. The mechanical, dynamic mechanical, thermal and microstructural properties were analyzed. The results from the tensile strength, yield strength, Young's modulus, and impact showed that the PLA-chitin-starch blend has the best mechanical properties compared to PLA-chitin and PLA-starch blends. The dynamic mechanical analysis result shows a better damping property for PLA-chitin than PLA-chitin-starch and PLA-starch. On the other hand, the thermal property analysis from thermogravimetry analysis (TGA) shows no significant improvement in a specific order, but the glass transition temperature of the composite increased compared to that of neat PLA. However, the degradation process was found to start with PLA-chitin for all composites, which suggests an improvement in PLA degradation. Significantly, the morphological analysis revealed a uniform mix with an obvious blend network in the three composites. Interestingly, the network was more significant in the PLA-chitin-starch blend, which may be responsible for its significantly enhanced mechanical properties compared with PLA-chitin and PLA-starch samples.
    Matched MeSH terms: Starch
  8. Olaiya NG, Nuryawan A, Oke PK, Khalil HPSA, Rizal S, Mogaji PB, et al.
    Polymers (Basel), 2020 Mar 05;12(3).
    PMID: 32151004 DOI: 10.3390/polym12030592
    The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers unsuitable for biomedical applications. This research focuses on the improvement of the miscibility of polymer composites using two-step mixing with a rheomixer and a mix extruder. Polylactic acid (PLA), chitin, and starch were produced after two-step mixing, using a compression molding method with decreasing composition variation (between 8% to 2%) of chitin and increasing starch content. A dynamic mechanical analysis (DMA) was used to study the mechanical behavior of the composite at various temperatures. The tensile strength, yield, elastic modulus, impact, morphology, and compatibility properties were also studied. The DMA results showed a glass transition temperature range of 50 °C to 100 °C for all samples, with a distinct peak value for the loss modulus and factor. The single distinct peak value meant the polymer blend was compatible. The storage and loss modulus increased with an increase in blending, while the loss factor decreased, indicating excellent compatibility and miscibility of the composite components. The mechanical properties of the samples improved compared to neat PLA. Small voids and immiscibility were noticed in the scanning electron microscopy images, and this was corroborated by X-ray diffraction graphs that showed an improvement in the crystalline nature of PLA with starch. Bioabsorption and toxicity tests showed compatibility with the rat system, which is similar to the human system.
    Matched MeSH terms: Starch
  9. Oladzadabbasabadi N, Ebadi S, Mohammadi Nafchi A, Karim AA, Kiahosseini SR
    Carbohydr Polym, 2017 Mar 15;160:43-51.
    PMID: 28115099 DOI: 10.1016/j.carbpol.2016.12.042
    The aim of this study was development a composite film based on sago starch and κ-carrageenan to find a gelatin alternative in the pharmaceutical capsules processing. Hydrolyzed-Hydroxypropylated (dually modified) sago starch was mixed with κ-carrageenan (0.25, 0.5, 0.75, and 1%). The drying kinetics, thermomechanical, physicochemical, and barrier properties of composite films were estimated and compared with bovine gelatin. Results show that drying kinetics and mechanical properties of the composite films were comparable to those of gelatin. The water vapor permeability and moisture content of the composite films were lower than those of gelatin. The solubility of the composite films was higher than that of gelatin, and the composite films were more stable at higher relative humidity than were the gelatin films. These results show that dually modified sago starch in combination with κ-carrageenan has properties similar to those of gelatin, thus proposed system can be used in pharmaceutical capsules processes.
    Matched MeSH terms: Starch/chemistry*
  10. Oladebeye AO, Oshodi AA, Amoo IA, Karim AA
    Food Chem, 2013 Nov 15;141(2):1416-23.
    PMID: 23790933 DOI: 10.1016/j.foodchem.2013.04.080
    Ozone-oxidised starches were prepared from the native starches isolated from white and red cocoyam, and white and yellow yam cultivars. The native and oxidised starches were evaluated for functional, thermal and molecular properties. The correlations between the amount of reacted ozone and carbonyl and carboxyl contents of the starches were positive, as ozone generation time (OGT) increased. Significant differences were obtained in terms of swelling power, solubility, pasting properties and textural properties of the native starches upon oxidation. The DSC data showed lower transition temperatures and enthalpies for retrograded gels compared to the gelatinized gels of the same starch types. The native starches showed CB-type XRD patterns while the oxidised starches resembled the CA-type pattern. As amylose content increased, amylopectin contents of the starches decreased upon oxidation. Similarly, an increase in Mw values were observed with a corresponding decrease in Mn values upon oxidation.
    Matched MeSH terms: Starch/chemistry*
  11. Ojukwu M, Tan HL, Murad M, Nafchi AM, Easa AM
    Food Sci Technol Int, 2023 Dec;29(8):799-808.
    PMID: 36000280 DOI: 10.1177/10820132221121169
    In a bid to produce rice flour noodles with improved texture and reduced cooking time, rice flour-soy protein isolate noodles (RNS) were structurally enhanced by a combined treatment (COM) of microbial transglutaminase (MTG) with glucono-δ-lactone (GDL). The RNS-COM was either dried using superheated steam (SHS) to yield RNS-COM-SHS or steamed for 10 min (S10) before air drying to produce RNS-COM-S10 noodles. Control samples were SHS-dried rice flour (RN-SHS) and air-dried RN-S10 noodles. In general, textural and microstructural properties indicated higher textural properties and a more robust network in RNS-COM-SHS and RNS-COM-S10 than in other noodles. However, optimum cooking time (P < 0.5) was in the order; RN-SHS, RNS-COM-SHS < RN-S10 < RNS-COM-S10. As a result of the COM treatment, structurally enhanced noodles were more resistant to cooking. As applied in RNS-COM-SHS noodles, SHS was able to improve cooking quality, probably through the formation of bigger and evenly spread pores that had promoted faster gelatinisation of starch, with a high order of relative starch crystallinity.
    Matched MeSH terms: Starch/chemistry
  12. Nute PE, Pataryas HA
    Am. J. Phys. Anthropol., 1974 Jan;40(1):17-25.
    PMID: 4206325
    Matched MeSH terms: Electrophoresis, Starch Gel
  13. Nur Azura AB, Yusoff M, Tan GY, Jegadeesh R, Appleton DR, Vikineswary S
    J Ind Microbiol Biotechnol, 2016 Apr;43(4):485-93.
    PMID: 26721619 DOI: 10.1007/s10295-015-1724-4
    Actinomycete strain AUM 00500 was 99.5 % similar to Streptomyces sanglieri NBRC 100784(T) and was evaluated for antagonistic activity towards Ganoderma boninense, the causative fungus of basal stem rot of oil palm. The strain showed strong antifungal activity towards G. boninense in in vitro and SEM analysis showed various modes of inhibition of the fungus. Ethyl acetate extracts of single culture and inhibition zone of cross-plug culture by HPLC indicated that strain AUM 00500 produced two different antibiotics of the glutarimide group namely cycloheximide and actiphenol. In greenhouse trials, oil palm seed treated with spores of S. sanglieri strain AUM 00500 at 10(9) cfu/ml showed significant (P starch casein agar.
    Matched MeSH terms: Starch
  14. Noranizan, M.A., Dzulkifly, M.H., Russly, A.R.
    MyJurnal
    Changes in the physicochemical properties of wheat, sago, tapioca and potato starches were studied
    after heating for 1 hour at 100oC, 110oC, and 120oC and for 2 hours at 120oC. These properties were characterised through the swelling behaviour of starch granules, amount of carbohydrate materials leached from the granules, starch paste retrogradation rate and gel strength. For all starches except wheat, the swelling ability, rate of retrogradation and gel strength decreased while solubility increased with increasing temperature and heating time. Wheat starch followed this pattern only when heated at 120oC for 1 and 2 hours. Gel strength correlated well with the ratio of amylose to amylopectin (R) in the leachate. To produce fried crackers with good expansion properties, the granule has to be sufficiently degraded so as to allow more amylopectin to be leached out to achieve R value of 0.25-0.5. This can be achieved by heating wheat starch at 120oC for 1 hour or longer.
    Matched MeSH terms: Starch
  15. Noor Aziah, A. A., Ho, L. H., Noor Shazliana, A. A., Rajeev, B.
    MyJurnal
    Quality attributes of steamed bread without green banana flour (BF) (CON), substituted with 30%
    BF (BBFI) and 30% BF + 8% gluten (BBFII) were determined. The green banana flour (BF) and the mixture of wheat flour (WF) substituted with 30% BF + 8% gluten (FBFII) was significantly highest in water holding capacity and oil holding capacities, respectively. Potassium, calcium and magnesium were significantly higher in BBFI and BBFII than CON. Significantly highest insoluble dietary fibre and total dietary fibre shown in BBFI. Steaming resulted significant reduction in resistant starch content in BBFI as compared with the dough of BBFI I. The specific volume of BBFII and CON showed significant different compared to the BBFI. The BBFII spread ratio was significantly highest and steamer spring lowest than CON. BBFII showed significantly highest in hardness and adhesiveness values but CON was significantly highest in cohesiveness, elasticity and chewiness. L and Hue values was shown highest in CON. BBFII indicated highest acceptability score than other samples.
    Matched MeSH terms: Starch
  16. Ng, K. F., Abbas, F. M. A., Tan, T. C., Azhar, M. E.
    MyJurnal
    Proximate composition, pH and amylose content of ripe Cavendish banana flour (RBF) prepared in this study were compared with all-purpose wheat flour (WF). RBF was found to be significantly (P < 0.05) higher in total carbohydrates and minerals content, while significantly (P < 0.05) lower in protein and fat contents compared with those of WF. Wheat-ripe banana composite flours (W-RBF) prepared by partial substitution of WF with RBF were assessed for swelling power, solubility, pasting properties and gel textural properties. Granular swelling of RBF occurred at a higher temperature compared to that of WF, suggesting that more energy and water were required to cook WF-RBF as the presence of soluble carbohydrates would compete for water and this would eventually delay starch hydration and granular expansion during cooking. Higher substitution with RBF led to higher soluble carbohydrates content, and increase in solubility index of WF-RBF. Partial substitution with RBF also resulted in significant (P < 0.05) decrease in pasting properties. A higher substitution of WF with RBF could reduce starch gelatinisation during cooking and retrogradation owing to the reduction of available starch in WF-RBF. All WF-RBF gels were significantly (P < 0.05) firmer and less sticky compared to WF gels.
    Matched MeSH terms: Starch
  17. Ng SH, Robert SD, Wan Ahmad WA, Wan Ishak WR
    Food Chem, 2017 Jul 15;227:358-368.
    PMID: 28274444 DOI: 10.1016/j.foodchem.2017.01.108
    The purpose of this study was to determine the effects of Pleurotus sajor-caju (PSC) powder addition at 0, 4, 8 and 12% levels on the nutritional values, pasting properties, thermal characteristics, microstructure, in vitro starch digestibility, in vivo glycaemic index (GI) and sensorial properties of biscuits. Elevated incorporation levels of PSC powder increased the dietary fibre (DF) content and reduced the pasting viscosities and starch gelatinisation enthalpy value of biscuits. The addition of DF-rich PSC powder also interfered with the integrity of the starch granules by reducing the sizes and inducing the uneven spherical shapes of the starch granules, which, in turn, resulted in reduced starch susceptibility to digestive enzymes. The restriction starch hydrolysis rate markedly reduced the GI of biscuits. The incorporation of 8% PSC powder in biscuits (GI=49) could be an effective way of developing a nutritious and low-GI biscuit without jeopardizing its desirable sensorial properties.
    Matched MeSH terms: Starch/metabolism*; Starch/chemistry
  18. Ng S, Lasekan O, Muhammad KS, Hussain N, Sulaiman R
    J Food Sci Technol, 2015 Oct;52(10):6623-30.
    PMID: 26396409 DOI: 10.1007/s13197-015-1737-z
    The seeds of Terminalia catappa from Malaysia were analyzed for their physicochemical properties. The following values were obtained: moisture 6.23 ± 0.09 %, ash 3.78 ± 0.04 %, lipid 54.68 ± 0.14 %, protein 17.66 ± 0.13 %, total dietary fibre 9.97 ± 0.08 %, carbohydrate 7.68 ± 0.06 %, reducing sugar 1.36 ± 0.16 %, starch 1.22 ± 0.15 %, caloric value 593.48 ± 0.24 %. Studies were also conducted on amino acid profile and free fatty acid composition of the seed oil. Results revealed that glutamic acid was the major essential amino acid while methionine and lysine were the limiting amino acids. The major saturated fatty acid was palmitic acid, while the main unsaturated fatty acid was oleic acid followed by linoleic acid. In addition, the seed was rich in sucrose and had trace amount of glucose and fructose. Briefly, the seed was high in proteins and lipids which are beneficial to human.
    Matched MeSH terms: Starch
  19. Nazrin A, Sapuan SM, Zuhri MYM
    Polymers (Basel), 2020 Sep 27;12(10).
    PMID: 32992514 DOI: 10.3390/polym12102216
    In this paper, sugar palm nanocellulose fibre-reinforced thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend bionanocomposites were prepared using melt blending and compression moulding with different TPS concentrations (20%, 30%, 40%, 60%, and 80%) and constant sugar palm nanocellulose fibres (0.5%). The physical, mechanical, thermal, and water barrier properties were investigated. The SEM images indicated different TPS loading effects with the morphology of the blend bionanocomposites due to their immiscibility. A high content of TPS led to agglomeration, while a lower content resulted in the presence of cracks and voids. The 20% TPS loading reduced the tensile strength from 49.08 to 19.45 MPa and flexural strength from 79.60 to 35.38 MPa. The thermal stability of the blend bionanocomposites was reduced as the TPS loading increased. The thickness swelling, which corresponded to the water absorption, demonstrated an increasing trend with the increased addition of TPS loading.
    Matched MeSH terms: Starch
  20. Nazrin A, Sapuan SM, Zuhri MYM, Ilyas RA, Syafiq R, Sherwani SFK
    Front Chem, 2020;8:213.
    PMID: 32351928 DOI: 10.3389/fchem.2020.00213
    Synthetic plastics are severely detrimental to the environment because non-biodegradable plastics do not degrade for hundreds of years. Nowadays, these plastics are very commonly used for food packaging. To overcome this problem, food packaging materials should be substituted with "green" or environmentally friendly materials, normally in the form of natural fiber reinforced biopolymer composites. Thermoplastic starch (TPS), polylactic acid (PLA) and polybutylene succinate (PBS) were chosen for the substitution, because of their availability, biodegradability, and good food contact properties. Plasticizer (glycerol) was used to modify the starch, such as TPS under a heating condition, which improved its processability. TPS films are sensitive to moisture and their mechanical properties are generally not suitable for food packaging if used alone, while PLA and PBS have a low oxygen barrier but good mechanical properties and processability. In general, TPS, PLA, and PBS need to be modified for food packaging requirements. Natural fibers are often incorporated as reinforcements into TPS, PLA, and PBS to overcome their weaknesses. Natural fibers are normally used in the form of fibers, fillers, celluloses, and nanocelluloses, but the focus of this paper is on nanocellulose. Nanocellulose reinforced polymer composites demonstrate an improvement in mechanical, barrier, and thermal properties. The addition of compatibilizer as a coupling agent promotes a fine dispersion of nanocelluloses in polymer. Additionally, nanocellulose and TPS are also mixed with PLA and PBS because they are costly, despite having commendable properties. Starch and natural fibers are utilized as fillers because they are abundant, cheap and biodegradable.
    Matched MeSH terms: Starch
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links