Displaying publications 81 - 100 of 391 in total

Abstract:
Sort:
  1. Chua KB
    J Clin Virol, 2003 Apr;26(3):265-75.
    PMID: 12637075
    Nipah virus, a novel paramyxovirus, closely related to Hendra virus emerged in northern part of Peninsular Malaysia in 1998. The virus caused an outbreak of severe febrile encephalitis in humans with a high mortality rate, whereas, in pigs, encephalitis and respiratory diseases but with a relatively low mortality rate. The outbreak subsequently spread to various regions of the country and Singapore in the south due to the movement of infected pigs. Nipah virus caused systemic infections in humans, pigs and other mammals. Histopathological and radiological findings were characteristic of the disease. Fruitbats of Pteropid species were identified as the natural reservoir hosts. Evidence suggested that climatic and anthropogenic driven ecological changes coupled with the location of piggeries in orchard and the design of pigsties allowed the spill-over of this novel paramyxovirus from its reservoir host into the domestic pigs and ultimately to humans and other animals.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology*; Swine Diseases/transmission; Swine Diseases/virology
  2. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, et al.
    Lancet, 1999 Oct 9;354(9186):1257-9.
    PMID: 10520635
    Between February and April, 1999, an outbreak of viral encephalitis occurred among pig-farmers in Malaysia. We report findings for the first three patients who died.
    Matched MeSH terms: Swine
  3. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, et al.
    Science, 2000 May 26;288(5470):1432-5.
    PMID: 10827955
    A paramyxovirus virus termed Nipah virus has been identified as the etiologic agent of an outbreak of severe encephalitis in people with close contact exposure to pigs in Malaysia and Singapore. The outbreak was first noted in late September 1998 and by mid-June 1999, more than 265 encephalitis cases, including 105 deaths, had been reported in Malaysia, and 11 cases of encephalitis or respiratory illness with one death had been reported in Singapore. Electron microscopic, serologic, and genetic studies indicate that this virus belongs to the family Paramyxoviridae and is most closely related to the recently discovered Hendra virus. We suggest that these two viruses are representative of a new genus within the family Paramyxoviridae. Like Hendra virus, Nipah virus is unusual among the paramyxoviruses in its ability to infect and cause potentially fatal disease in a number of host species, including humans.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/virology
  4. Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S
    Pharm Dev Technol, 2013 May-Jun;18(3):591-9.
    PMID: 22149945 DOI: 10.3109/10837450.2011.640688
    In the present study, we investigate the mucoadhesive characteristics and release of the anticancer agent curcumin, contained in chitosan nanoparticles (CS-NPs). Such a system has potential therapeutic benefits in the treatment of colon cancer through prolonged retention and delivery. The CS-NPs were ionically gelled with tripolyphosphate (TPP) and registered an isoelectric pH of 6.2 (z-average diameter of 214 nm ± 1.0 nm). pH variations around the isoelectric point caused a reduction in CS-NPs electrical charge which correspondingly increased the z-average due to agglomeration. Curcumin release from CS-NPs was slowest at chitosan to TPP weight ratio of 3:1, with a significant retention (36%) at the end of 6 h. Adsorption isotherms of mucin on CS-NPs fitted both the Freundlich and Langmuir models, suggesting a monolayer-limited adsorption on heterogeneous sites with varied affinities. Encapsulated curcumin exerted an influence on the adsorption of mucin due to H-bonding as well as π-π interactions between the phenolic moieties of curcumin and mucin.
    Matched MeSH terms: Swine
  5. Colley HE, Said Z, Santocildes-Romero ME, Baker SR, D'Apice K, Hansen J, et al.
    Biomaterials, 2018 09;178:134-146.
    PMID: 29929183 DOI: 10.1016/j.biomaterials.2018.06.009
    Oral lichen planus (OLP) and recurrent aphthous stomatitis (RAS) are chronic inflammatory conditions often characterised by erosive and/or painful oral lesions that have a considerable impact on quality of life. Current treatment often necessitates the use of steroids in the form of mouthwashes, creams or ointments, but these are often ineffective due to inadequate drug contact times with the lesion. Here we evaluate the performance of novel mucoadhesive patches for targeted drug delivery. Electrospun polymeric mucoadhesive patches were produced and characterised for their physical properties and cytotoxicity before evaluation of residence time and acceptability in a human feasibility study. Clobetasol-17-propionate incorporated into the patches was released in a sustained manner in both tissue-engineered oral mucosa and ex vivo porcine mucosa. Clobetasol-17 propionate-loaded patches were further evaluated for residence time and drug release in an in vivo animal model and demonstrated prolonged adhesion and drug release at therapeutic-relevant doses and time points. These data show that electrospun patches are adherent to mucosal tissue without causing tissue damage, and can be successfully loaded with and release clinically active drugs. These patches hold great promise for the treatment of oral conditions such as OLP and RAS, and potentially many other oral lesions.
    Matched MeSH terms: Swine
  6. Crisóstomo-Jorquera V, Landaeta-Aqueveque C
    Transbound Emerg Dis, 2022 Sep;69(5):e1269-e1279.
    PMID: 35398980 DOI: 10.1111/tbed.14554
    The genus Trichinella has a worldwide distribution, infecting people, domestic animals, and wildlife. It includes 13 genotypes, which are geographically delimited; Trichinella is transmitted to people through the ingestion of undercooked meat. Historically, it has been associated with pigs, but most Trichinella species affect wildlife, and cases of trichinellosis due to the consumption of game meat have been emerging. Therefore, it is important to monitor the sources of transmission to domestic animals and humans. The objective of this work was to analyse reports of Trichinella spp. in wild/feral animals around the world to identify the needs of future research in the epidemiology of the sylvatic cycle. A search of studies published until 2021 was conducted using Web of Science and SciELO. In the Palearctic, the most commonly studied hosts were wild boars and red foxes, and hosts with the highest prevalence rates were polar bears and martens. In the Nearctic, red foxes and black bears were the most frequently studied hosts, and the highest prevalence was found for wolverines and brown bears. In the Neotropics, positive reports were only identified in two countries, with wild boars being the most commonly studied species, and armadillos featuring the highest prevalence. In the Afrotropics, Trichinella limits its presence to Sub-Saharan Africa, where lions are the most studied hosts, and spotted hyenas have the highest prevalence. In the Indo-Malaya and Australasia ecozones, information on wildlife is scarce; the Norwegian rat is the most frequently studied host, and the Tasmanian devil has the highest prevalence of infection. In the last decade, research on world wildlife has increased which is associated with more frequent trichinellosis outbreaks caused by the consumption of wild meat. The results suggest the need to increase research in developing countries, particularly where more diverse sources of meat are available for human consumption.
    Matched MeSH terms: Swine
  7. Cuttiford L, Pimsler ML, Heo CC, Zheng L, Karunaratne I, Trissini G, et al.
    J Med Entomol, 2021 07 16;58(4):1654-1662.
    PMID: 33970239 DOI: 10.1093/jme/tjab081
    A basic tenet of forensic entomology is development data of an insect can be used to predict the time of colonization (TOC) by insect specimens collected from remains, and this prediction is related to the time of death and/or time of placement (TOP). However, few datasets have been evaluated to determine their accuracy or precision. The black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae) is recognized as an insect of forensic importance. This study examined the accuracy and precision of several development datasets for the black soldier fly by estimating the TOP of five sets of human and three sets of swine remains in San Marcos and College Station, TX, respectively. Data generated from this study indicate only one of these datasets consistently (time-to-prepupae 52%; time-to-eclosion 75%) produced TOP estimations that occurred within a day of the actual TOP of the remains. It is unknown if the precolonization interval (PreCI) of this species is long, but it has been observed that the species can colonize within 6 d after death. This assumption remains untested by validation studies. Accounting for this PreCI improved accuracy for the time-to-prepupae group, but reduced accuracy in the time-to-eclosion group. The findings presented here highlight a need for detailed, forensic-based development data for the black soldier fly that can reliably and accurately be used in casework. Finally, this study outlines the need for a basic understanding of the timing of resource utilization (i.e., duration of the PreCI) for forensically relevant taxa so that reasonable corrections may be made to TOC as related to minimum postmortem interval (mPMI) estimates.
    Matched MeSH terms: Swine
  8. Dahlia H, Tan LJ, Zarrahimah Z, Maria J
    Trop Biomed, 2009 Dec;26(3):341-5.
    PMID: 20237449 MyJurnal
    The isolation of Mycoplasma hyosynoviae from a piglet with severe pneumonia is described. This is the first report of M. hyosynoviae isolation in the country. The lung sample where the isolation was made was severely consolidated, suppurative and pleurisy. The pathogenicity of the M. hyosynoviae isolated has yet to be determined.
    Matched MeSH terms: Swine; Swine Diseases/diagnosis; Swine Diseases/microbiology*
  9. De AK, Sawhney S, Ponraj P, Muthiyan R, Muniswamy K, Ravi SK, et al.
    Anim Biotechnol, 2023 Apr;34(2):156-165.
    PMID: 34310265 DOI: 10.1080/10495398.2021.1950742
    Nicobari pig is reared by Nicobarese, a native tribal population of Andaman and Nicobar Islands. Nicobari pig has maintained its genetic identity due to geographical isolation. This communication is the first report on maternal inheritance of Nicobari pigs. DNA polymorphism data showed seven haplotypes. D-loop sequence information and mitogenome analysis were able to earmark Nicobari pigs to Asian clade. The domestication process of pigs and its expansion pattern help to understand human migration pattern. Based on this hypothesis, this communication elucidates the probable origin of Nicobarese. Earlier studies indicated that Nicobarese had genetic affinities to races distributed in China, Malaysia and Thailand. Our data on maternal inheritance of Nicobari pig correlates with the data on migration of Nicobarese. Moreover, we could establish a novel connection of Nicobarese with people of Northeastern parts of India, Philippines and Vietnam through phylogenetic signal and geographical provenance of Nicobari pig. We further concluded that migration of Nicobarese happened during Western route of migration (WRM) ∼4000 years before present. Therefore, we propose one wave hypothesis of peopling of Nicobar based on our study and existence of Ausrtroasiatic language, Mon-Khmer in these islands.
    Matched MeSH terms: Swine
  10. Devendra C
    Asian-Australas J Anim Sci, 2012 Jan;25(1):122-42.
    PMID: 25049487 DOI: 10.5713/ajas.2011.r.09
    The importance of rainfed areas and animal agriculture on productivity enhancement and food security for economic rural growth in Asia is discussed in the context of opportunities for increasing potential contribution from them. The extent of the rainfed area of about 223 million hectares and the biophysical attributes are described. They have been variously referred to inter alia as fragile, marginal, dry, waste, problem, threatened, range, less favoured, low potential lands, forests and woodlands, including lowlands and uplands. Of these, the terms less favoured areas (LFAs), and low or high potential are quite widely used. The LFAs are characterised by four key features: i) very variable biophysical elements, notably poor soil quality, rainfall, length of growing season and dry periods, ii) extreme poverty and very poor people who continuously face hunger and vulnerability, iii) presence of large populations of ruminant animals (buffaloes, cattle, goats and sheep), and iv) have had minimum development attention and an unfinished wanting agenda. The rainfed humid/sub-humid areas found mainly in South East Asia (99 million ha), and arid/semi-arid tropical systems found in South Asia (116 million ha) are priority agro-ecological zones (AEZs). In India for example, the ecosystem occupies 68% of the total cultivated area and supports 40% of the human and 65% of the livestock populations. The area also produces 4% of food requirements. The biophysical and typical household characteristics, agricultural diversification, patterns of mixed farming and cropping systems are also described. Concerning animals, their role and economic importance, relevance of ownership, nomadic movements, and more importantly their potential value as the entry point for the development of LFAs is discussed. Two examples of demonstrated success concern increasing buffalo production for milk and their expanded use in semi-arid AEZs in India, and the integration of cattle and goats with oil palm in Malaysia. Revitalised development of the LFAs is justified by the demand for agricultural land to meet human needs e.g. housing, recreation and industrialisation; use of arable land to expand crop production to ceiling levels; increasing and very high animal densities; increased urbanisation and pressure on the use of available land; growing environmental concerns of very intensive crop production e.g. acidification and salinisation with rice cultivation; and human health risks due to expanding peri-urban poultry and pig production. The strategies for promoting productivity growth will require concerted R and D on improved use of LFAs, application of systems perspectives for technology delivery, increased investments, a policy framework and improved farmer-researcher-extension linkages. These challenges and their resolution in rainfed areas can forcefully impact on increased productivity, improved livelihoods and human welfare, and environmental sustainability in the future.
    Matched MeSH terms: Swine
  11. Devendra, C.
    ASM Science Journal, 2010;4(2):173-184.
    MyJurnal
    In agricultural systems, animals play a very important multifunctional role for developing communities
    throughout the world. This is reflected in the generation of value-added products like meat, milk and eggs for food security; socio-economic benefits like increased income, security and survival, and an infinite variety of services such as the supply of draught power and dung for soil fertility. However, and despite this importance, the situation is awesome since the projected total meat and milk consumption levels in 2020 are far in excess of anticipated supply, and projections of both meat and milk will have to be doubled by 2050 to meet human requirements. Strategies for productivity growth from animals are therefore urgent, and are discussed in the context of the scenario of waning agriculture, extreme poverty and hunger, food crisis, the current contributions from the components of the animal industries, prevailing constraints, opportunities and strategies for improved production. Current trends suggest that the non-ruminant pig and poultry industries will continue to contribute the major share of meat and all of egg production to meet projected human needs. With ruminants by comparison, overall meat production continues to come mainly from the slaughter of numbers. Strategic opportunities exist for maximising productivity in improved production systems. These include targeting rainfed areas, development of small farms, integrated crop-animal systems, intensive application of productivity-enhancing technologies, promoting intensive use of crop residues and expanding the R&D frontiers with interdisciplinarity and farming
    systems perspectives. The issues, together with increased investments and institutional commitment, provide for expanded animal production systems and productivity which can forcefully impact on improved human welfare in Asia in the immediate tomorrow.
    Matched MeSH terms: Swine
  12. Devendra, C.
    ASM Science Journal, 2007;1(1):63-73.
    MyJurnal
    The increased human demand for animal proteins in Malaysia is led by several factors: population growth, urbanisation, income growth and changing consumer preferences. Meeting the projected increased demand in the future is an awesome and challenging task. Presently, the non-ruminant poultry and pig industries, mainly private sector led, make the most significant contribution to total animal protein supplies, and inefficient ruminant production systems lag well behind. The strategy for promoting productivity growth to increase animal protein supplies from ruminants requires concerted efficient natural resource management that can target specific production systems. Two distinct economic opportunities are the development of oil palm-based cattle and goat production. The value addition to oil palm cultivation due to the beneficial crop-animal-soil interactions are enormous. The prerequisites are inter-disciplinary efforts, holistic systems, participatory community-based research and development that are needs-based and address constraints, increased research investments, institutional commitment and a policy environment that can enhance total factor productivity in the future.
    Matched MeSH terms: Swine
  13. Dhang CC, Heo CC, McAlpine D, Kurahashi H, Ahmad NW, Mohamad AM, et al.
    Trop Biomed, 2008 Dec;25(3):264-6.
    PMID: 19287370
    Signal fly, Scholastes sp. (Diptera: Platystomatidae) was observed associated with animal carcasses in Malaysia. The first observation was on a monkey carcass, which was killed by using a handgun and immediately placed in a forested area in Gombak, Selangor while the second observation was on a pig that died of natural causes and whose carcass was placed in an oil palm plantation in Tanjung Sepat, Selangor. Both animal carcasses were visited by Scholastes sp. flies during the fresh decomposition period. However, the role Scholastes flies in the decomposition process remains unknown. In this paper, we report the occurrence of Scholastes sp. on animal carcasses in Malaysia for the first time.
    Matched MeSH terms: Swine
  14. Di KN, Pham DT, Tee TS, Binh QA, Nguyen TC
    Trop Anim Health Prod, 2021 Jun 05;53(3):340.
    PMID: 34089130 DOI: 10.1007/s11250-021-02780-6
    Inappropriate use of antibiotics in animal production system is one of the major factors leading to the antibiotic resistance (ABR) development. In Vietnam, the ABR situation is crucial as antibiotics have been used indiscriminately for disease prevention and as growth promoters in animals. Thus, a thorough understanding on the ABR in veterinary settings would be beneficial to the Vietnam public health authority in formulating timely interventions. This review aimed to provide information on the current status of antibiotic usage in animal husbandry in Vietnam, identified gaps in research, and suggested possible solutions to tackle ABR. To this end, data on ABR in animals were extracted from 3 major electronic databases (PubMed, Web of Science, and ScienceDirect) in the period of January 2013-December 2020. The review findings were reported according to PRISMA, which highlighted the emergence and persistence of ABR in bacterial isolates, including Escherichia coli, Enterococcus spp., and Salmonella species, obtained from pigs and poultry. The lack of awareness of Vietnamese farmers on the antibiotic utilization guidelines was one of the main causes driving the animal ABR. Hence, this paper calls for interventions to restrict antibiotics use in food-producing animals by national action plan and antibiotics control programs. Additionally, studies to evaluate knowledge, attitude, and practice (KAP) of the community are required to promote rational use of antibiotics in all sectors.
    Matched MeSH terms: Swine
  15. Diederich S, Maisner A
    Ann N Y Acad Sci, 2007 Apr;1102:39-50.
    PMID: 17470910
    Nipah virus (NiV) is a highly pathogenic paramyxovirus, which emerged in 1998 from fruit bats in Malaysia and caused an outbreak of severe respiratory disease in pigs and fatal encephalitis in humans with high mortality rates. In contrast to most paramyxoviruses, NiV can infect a large variety of mammalian species. Due to this broad host range, its zoonotic potential, its high pathogenicity for humans, and the lack of effective vaccines or therapeutics, NiV was classified as a biosafety level 4 pathogen. This article provides an overview of the molecular characteristics of NiV focusing on the structure, functions, and unique biological properties of the two NiV surface glycoproteins, the receptor-binding G protein, and the fusion protein F. Since viral glycoproteins are major determinants for cell tropism and virus spread, a detailed knowledge of these proteins can help to understand the molecular basis of viral pathogenicity.
    Matched MeSH terms: Swine
  16. Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, et al.
    Bioorg Chem, 2020 07;100:103906.
    PMID: 32422387 DOI: 10.1016/j.bioorg.2020.103906
    A new series of 4H-chromene-3-carboxylate derivatives were synthesized using multicomponent reaction of salicylaldehyde, ethyl acetoacetate and dimedone in ethanol with K3PO4 as a catalyst at 80 °C. The structures of all newly synthesized compounds were confirmed by spectral techniques viz. IR, 1H NMR, 13C NMR, and LCMS analysis. The newly synthesized compounds 4a to 4j were screened against elastase enzyme. Interestingly, all these compounds found to be potent elastase inhibitors with much lower IC50 value. The compound 4b was found to be most potent elastase inhibitor (IC50 = 0.41 ± 0.01 µM) amongst the synthesized series against standard Oleanolic Acid (IC50 value = 13.45 ± 0.0 µM). The Kinetics mechanism for compound 4b was analyzed by Lineweaver-Burk plots which revealed that compound inhibited elastase competitively by forming an enzyme-inhibitor complex. Along with this, all the synthesized compounds (4a - 4j) exhibits excellent DPPH free radical scavenging ability. The inhibition constant Ki for compound 4b was found to be 0.6 µM. The computational study was comprehensible with the experimental results with good docking energy values (Kcal/mol). Therefore, these molecules can be considered as promising medicinal scaffolds for the treatment of skin-related maladies.
    Matched MeSH terms: Swine
  17. Easton A
    BMJ, 1999 Apr 03;318(7188):893.
    PMID: 10102839 DOI: 10.1136/bmj.318.7188.893a
    Matched MeSH terms: Swine
  18. Easton A
    BMJ, 1999 May 08;318(7193):1232.
    PMID: 10231244
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/transmission; Swine Diseases/virology
  19. Edwards S, Sands JJ
    DTW. Dtsch. Tierarztl. Wochenschr., 1990 Feb;97(2):79-81.
    PMID: 2178905
    Nineteen monoclonal antibodies (MAbs) with specificity for hog cholera virus (HCV) were prepared. They were used in an immune binding (peroxidase linked) assay to determine the reaction patterns of HCV isolates from Europe, Brazil, USA, Japan and Malaysia, as well as laboratory reference strains of the virus. A further panel of 17 MAbs raised against bovine virus diarrhoea virus (BVDV) was included in the study, together with 5 MAbs raised against a non-HCV pestivirus of porcine origin. All the MAbs were also tested against representative strains of BVDV and border disease virus. Six MAbs were HCV-specific, reacting with all isolates of HCV and none of the ruminant viruses. Among the other HCV MAbs geographical variation in reaction patterns was observed. There was evidence of antigenic distinction between recent European isolates, and archive material originally isolated more than 10 years ago.
    Matched MeSH terms: Classical Swine Fever/immunology*; Swine
  20. Elvert M, Sauerhering L, Maisner A
    J Infect Dis, 2020 05 11;221(Suppl 4):S395-S400.
    PMID: 31665348 DOI: 10.1093/infdis/jiz455
    During the Nipah virus (NiV) outbreak in Malaysia, pigs and humans were infected. While pigs generally developed severe respiratory disease due to effective virus replication and associated inflammation processes in porcine airways, respiratory symptoms in humans were rare and less severe. To elucidate the reasons for the species-specific differences in NiV airway infections, we compared the cytokine responses as a first reaction to NiV in primary porcine and human bronchial epithelial cells (PBEpC and HBEpC, respectively). In both cell types, NiV infection resulted in the expression of type III interferons (IFN-λ). Upon infection with similar virus doses, viral RNA load and IFN expression were substantially higher in HBEpC. Even if PBEpC expressed the same viral RNA amounts as NiV-infected HBEpC, the porcine cells showed reduced IFN- and IFN-dependent antiviral gene expression. Despite this inherently limited IFN response, the expression of proinflammatory cytokines (IL-6, IL-8) in NiV-infected PBEpC was not decreased. The downregulation of antiviral activity in the presence of a functional proinflammatory cytokine response might be one of the species-specific factors contributing to efficient virus replication and acute inflammation in the lungs of pigs infected with the Malaysian NiV strain.
    Matched MeSH terms: Swine
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links