Displaying publications 81 - 100 of 445 in total

Abstract:
Sort:
  1. Yap PSX, Ahmad Kamar A, Chong CW, Ngoi ST, Teh CSJ
    Microb Drug Resist, 2020 Mar;26(3):190-203.
    PMID: 31545116 DOI: 10.1089/mdr.2019.0199
    Background:
    Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life.
    Materials and Methods:
    In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates.
    Results:
    The strains harbored blaSHV-27, blaSHV-71, and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance.
    Conclusion:
    The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation.
    Matched MeSH terms: Virulence
  2. Kong ZX, Karunakaran R, Abdul Jabar K, Ponnampalavanar S, Chong CW, Teh CSJ
    Microb Drug Resist, 2021 Oct;27(10):1319-1327.
    PMID: 33877888 DOI: 10.1089/mdr.2020.0096
    Background: Hypermucoviscous carbapenem-resistant Klebsiella pneumoniae (hmCRKp) is emerging globally and approaching the worst-case scenario in health care system. Aims: The main objective in this study was to determine the hypermucoviscous characteristics among the carbapenem-resistant K. pneumoniae (CRKp) isolated from a teaching hospital in Malaysia. The association of hypermucoviscous phenotype with the virulence traits and clinical presentations were also investigated. Methods: A retrospective study was conducted in University Malaya Medical Centre (UMMC). The presence of hypermucoviscous K. pneumoniae was identified among a collection of CRKp clinical isolates (first isolate per patient) from 2014 to 2015 using string test. Correlation between clinical and microbial characteristics of the hmCRKp was investigated. Results: A total of nine (7.5%) hmCRKp were detected among 120 CRKp isolates. Majority of the isolates were hospital acquired or health care-associated infections. None of the patients had typical pyogenic liver abscess. All of the hmCRKp isolates harbored carbapenemase genes and were multidrug resistant. K1/K serotype, peg-344, allS, and magA were not identified among hmCRKp isolates, whereas aerobactin siderophore receptor gene (iutA), iroB, rmpA, and rmpA2 were detected. Only three hmCRKp isolates were resistant to serum bactericidal. Conclusions: All the isolates presented inconclusive evidence for the interpretation of hypervirulence. Therefore, more study should be performed in the future to have a better understanding of the virulence mechanisms in correlation with the clinical and microbial determinants.
    Matched MeSH terms: Virulence
  3. Mobasseri G, Thong KL, Rajasekaram G, Teh CSJ
    Braz J Microbiol, 2020 Mar;51(1):189-195.
    PMID: 31838661 DOI: 10.1007/s42770-019-00208-w
    Multidrug-resistant (MDR) and extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae associated with nosocomial infections have caused serious problems in antibiotic management with limited therapeutic choices. This study aimed to determine the genotypic and phenotypic characteristics of K. pneumoniae strains isolated from a tertiary hospital in Malaysia. Ninety-seven clinical K. pneumoniae strains were analyzed for antimicrobial susceptibility, all of which were sensitive to amikacin and colistin (except one strain), while 31.9 % and 27.8 % were MDR and ESBL producers, respectively. PCR and DNA sequencing of the amplicons indicated that the majority of MDR strains (26/27) were positive for blaTEM, followed by blaSHV (24/27), blaCTX-M-1 group (23/27), blaCTX-M-9 group (2/27), and mcr-1 (1/27). Thirty-seven strains were hypervirulent and PCR detection of virulence genes showed 38.1 %, 22.7 %, and 16.5 % of the strains were positive for K1, wabG, and uge genes, respectively. Genotyping by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) showed that these strains were genetically diverse and heterogeneous. Sequence types, ST23, ST22, and ST412 were the predominant genotypes. This is the first report of colistin-resistant K. pneumoniae among clinical strains associated with mcr-1 plasmid in Malaysia. The findings in this study have contributed to the effort in combating the increase in antimicrobial resistance by providing better understanding of genotypic characteristics and resistance mechanisms of the organisms.
    Matched MeSH terms: Virulence/genetics*
  4. Hassan H, Teh A
    Singapore Med J, 1994 Apr;35(2):217-8.
    PMID: 7939827
    Clostridium septicum infection has been shown to have a strikingly high association with either bowel or blood malignancies. The infection may be fatal if unrecognised. We report a case of C. septicum bacteremia in a man diagnosed with acute myeloid leukaemia.
    Matched MeSH terms: Virulence
  5. de Silva DD, Groenewald JZ, Crous PW, Ades PK, Nasruddin A, Mongkolporn O, et al.
    IMA Fungus, 2019;10:8.
    PMID: 32355609 DOI: 10.1186/s43008-019-0001-y
    Anthracnose of chili (Capsicum spp.) causes major production losses throughout Asia where chili plants are grown. A total of 260 Colletotrichum isolates, associated with necrotic lesions of chili leaves and fruit were collected from chili producing areas of Indonesia, Malaysia, Sri Lanka, Thailand and Taiwan. Colletotrichum truncatum was the most commonly isolated species from infected chili fruit and was readily identified by its falcate spores and abundant setae in the necrotic lesions. The other isolates consisted of straight conidia (cylindrical and fusiform) which were difficult to differentiate to species based on morphological characters. Taxonomic analysis of these straight conidia isolates based on multi-gene phylogenetic analyses (ITS, gapdh, chs-1, act, tub2, his3, ApMat, gs) revealed a further seven known Colletotrichum species, C. endophyticum, C. fructicola, C. karsti, C. plurivorum, C. scovillei, C. siamense and C. tropicale. In addition, three novel species are also described as C. javanense, C. makassarense and C. tainanense, associated with anthracnose of chili fruit in West Java (Indonesia); Makassar, South Sulawesi (Indonesia); and Tainan (Taiwan), respectively. Colletotrichum siamense is reported for the first time causing anthracnose of Capsicum annuum in Indonesia and Sri Lanka. This is also the first report of C. fructicola causing anthracnose of chili in Taiwan and Thailand and C. plurivorum in Malaysia and Thailand. Of the species with straight conidia, C. scovillei (acutatum complex), was the most prevalent throughout the surveyed countries, except for Sri Lanka from where this species was not isolated. Colletotrichum siamense (gloeosporioides complex) was also common in Indonesia, Sri Lanka and Thailand. Pathogenicity tests on chili fruit showed that C. javanense and C. scovillei were highly aggressive, especially when inoculated on non-wounded fruit, compared to all other species. The existence of new, highly aggressive exotic species, such as C. javanense, poses a biosecurity risk to production in countries which do not have adequate quarantine regulations to restrict the entry of exotic pathogens.
    Matched MeSH terms: Virulence
  6. Cheah HL, Raabe CA, Lee LP, Rozhdestvensky TS, Citartan M, Ahmed SA, et al.
    Crit Rev Biochem Mol Biol, 2018 08;53(4):335-355.
    PMID: 29793351 DOI: 10.1080/10409238.2018.1473330
    Over the past decade, RNA-deep sequencing has uncovered copious non-protein coding RNAs (npcRNAs) in bacteria. Many of them are key players in the regulation of gene expression, taking part in various regulatory circuits, such as metabolic responses to different environmental stresses, virulence, antibiotic resistance, and host-pathogen interactions. This has contributed to the high adaptability of bacteria to changing or even hostile environments. Their mechanisms include the regulation of transcriptional termination, modulation of translation, and alteration of messenger RNA (mRNA) stability, as well as protein sequestration. Here, the mechanisms of gene expression by regulatory bacterial npcRNAs are comprehensively reviewed and supplemented with well-characterized examples. This class of molecules and their mechanisms of action might be useful targets for the development of novel antibiotics.
    Matched MeSH terms: Virulence
  7. Lee TC, Yusoff K, Nathan S, Tan WS
    J Virol Methods, 2006 Sep;136(1-2):224-9.
    PMID: 16797732
    Newcastle disease virus (NDV) strains can be classified as virulent or avirulent based upon the severity of the disease. Differentiation of the virus into virulent and avirulent is necessary for effective control of the disease. Biopanning experiments were performed using a disulfide constrained phage displayed heptapeptide library against three pathotypes of NDV strains: velogenic (highly virulent), mesogenic (moderately virulent) and lentogenic (avirulent). A phage clone bearing the peptide sequence SWGEYDM capable of distinguishing virulent from avirulent NDV strains was isolated. This phage clone was employed as a diagnostic reagent in a dot blot assay and it successfully detected only virulent NDV strains.
    Matched MeSH terms: Virulence
  8. Wei YM, Tong WY, Tan JS, Lim V, Leong CR, Tan WN
    Curr Microbiol, 2024 Mar 10;81(4):108.
    PMID: 38461425 DOI: 10.1007/s00284-024-03627-7
    Methicillin-resistant Staphylococcus aureus (MRSA) infections have become one of the most threatening multidrug-resistant pathogens. Thus, an ongoing search for anti-MRSA compounds remains an urgent need to effectively treating MRSA infections. Phomopsidione, a novel antibiotic isolated from Diaporthe fraxini, has previously demonstrated potent anti-candidal activity. The present study aimed to investigate the effects of phomopsidione on the viability, virulence, and metabolites profile of MRSA. MRSA was sensitive to phomopsidione in a concentration-dependent manner. Phomopsidione exhibited minimum inhibitory concentration and minimum bactericidal concentration of 62.5 and 500.00 µg/mL against MRSA on broth microdilution assay. The compound showed significant reduction in virulence factors production including extracellular polymeric substances quantification, catalase, and lipase. An untargeted metabolomics analysis using liquid chromatography-high resolution mass spectrometry revealed a significant difference in the metabolites profile of MRSA with 13 putatively identified discriminant metabolites. The present study suggested the potential of phomopsidione as a promising anti-MRSA agent.
    Matched MeSH terms: Virulence; Virulence Factors
  9. Puah SM, Chua KH, Tan JA
    Int J Environ Res Public Health, 2016 Feb;13(2):199.
    PMID: 26861367 DOI: 10.3390/ijerph13020199
    Staphylococcus aureus is one of the leading causes of food poisoning. Its pathogenicity results from the possession of virulence genes that produce different toxins which result in self-limiting to severe illness often requiring hospitalization. In this study of 200 sushi and sashimi samples, S. aureus contamination was confirmed in 26% of the food samples. The S. aureus isolates were further characterized for virulence genes and antibiotic susceptibility. A high incidence of virulence genes was identified in 96.2% of the isolates and 20 different virulence gene profiles were confirmed. DNA amplification showed that 30.8% (16/52) of the S. aureus carried at least one SE gene which causes staphylococcal food poisoning. The most common enterotoxin gene was seg (11.5%) and the egc cluster was detected in 5.8% of the isolates. A combination of hla and hld was the most prevalent coexistence virulence genes and accounted for 59.6% of all isolates. Antibiotic resistance studies showed tetracycline resistance to be the most common at 28.8% while multi-drug resistance was found to be low at 3.8%. In conclusion, the high rate of S. aureus in the sampled sushi and sashimi indicates the need for food safety guidelines.
    Matched MeSH terms: Virulence/genetics*; Virulence Factors/genetics*
  10. Lee JYN, Tan IKP
    Sains Malaysiana, 2018;47:243-251.
    Bacteria play an important roles in the soil ecosystem and in the rhizosphere, they are intricately linked to nutrient content
    and its accessibility to plants, plant protection and sometimes pathogenicity. Banana grows well in the tropics and it is
    popularly grown in Orang Asli (OA) (indigenous people) settlements. Banana is also grown in commercial plantations.
    In traditional planting practices, the OA do not add pesticide nor fertilizer to their crops which are planted for selfsustenance
    mainly. On the other hand, fertilizer and pesticide are added to commercial banana plantations to maximise
    yield. Rhizosphere bacteria from the banana plant, Pisang Nipah, grown in OA fields and commercial plantations were
    identified by clone library construction of the 16S rRNA gene. This was to determine whether farming practices influenced
    the bacterial community in the banana plant rhizosphere. Acidobacteria, Proteobacteria and Actinobacteria were found in
    all the soil. Other common phyla found in some soil (but not all) were Nitrospirae, Firmicutes, Bacteroidetes, Chloroflexi,
    Verrumicrobia, Gemmatimonadetes and Cyanobacteria. The bacterial diversity was a little more diverse in the OA fields
    than the commercial plantations. The latter had higher contents of nitrogen, phosphorus and potassium. These could
    have exerted selective pressure to reduce the bacterial diversity in the commercial plantations.
    Matched MeSH terms: Virulence
  11. Ten KE, Muzahid NH, Rahman S, Tan HS
    PLoS One, 2023;18(4):e0283960.
    PMID: 37018343 DOI: 10.1371/journal.pone.0283960
    Galleria mellonella larvae have been increasingly used in research, including microbial infection studies. They act as suitable preliminary infection models to study host-pathogen interactions due to their advantages, such as the ability to survive at 37°C mimicking human body temperature, their immune system shares similarities with mammalian immune systems, and their short life cycle allowing large-scale studies. Here, we present a protocol for simple rearing and maintenance of G. mellonella without requiring special instruments and specialized training. This allows the continuous supply of healthy G. mellonella for research purposes. Besides, this protocol also provides detailed procedures on the (i) G. mellonella infection assays (killing assay and bacterial burden assay) for virulence studies and (ii) bacterial cell harvesting from infected larvae and RNA extraction for bacterial gene expression studies during infection. Our protocol could not only be used in the studies of A. baumannii virulence but can also be modified according to different bacterial strains.
    Matched MeSH terms: Virulence
  12. Mehrbod P, Ideris A, Omar AR, Hair-Bejo M, Tan SW, Kheiri MT, et al.
    Virol J, 2012;9:44.
    PMID: 22340010 DOI: 10.1186/1743-422X-9-44
    The influenza virus is still one of the most important respiratory risks affecting humans which require effective treatments. In this case, traditional medications are of interest. HESA-A is an active natural biological compound from herbal-marine origin. Previous studies have reported that the therapeutic properties of HESA-A are able to treat psoriasis vulgaris and cancers. However, no antiviral properties have been reported.
    Matched MeSH terms: Virulence
  13. Borkhanuddin MH, Goswami U, Cech G, Molnár K, Atkinson SD, Székely C
    Food Waterborne Parasitol, 2020 Sep;20:e00092.
    PMID: 32995584 DOI: 10.1016/j.fawpar.2020.e00092
    This study was a co-operative investigation of myxosporean infections of Notopterus notopterus, the bronze featherback, which is a popular food fish in the South Asian region. We examined fish from Lake Kenyir, Malaysia and the River Ganga, Hastinapur, Uttar Pradesh, India, and observed infections with two myxosporeans: Myxidium cf. notopterum (Myxidiidae) and Henneguya ganapatiae (Myxobolidae), respectively. These species were identified by myxospore morphology, morphometry and host tissue affinity, and the original descriptions supplemented with small-subunit ribosomal DNA sequences and phylogenetic analysis. Free myxospores of M. cf. notopterum were found in the gallbladder, and measured 14.7 ± 0.6 μm long and 6.3 ± 0.6 μm wide; host, tissue and myxospore dimensions overlapped with the type, but differed in morphological details (spore shape, valve cell ridges) and locality (Malaysia versus India). Plasmodia and spores of H. ganapatiae were observed in gills, and myxospores had a spore body 9.7 ± 0.4 μm long, 4.5 ± 0.5 μm wide; sample locality, host, tissue, spore morphology and morphometry matched the original description. Small-subunit ribosomal DNA sequences were deposited in GenBank (M. cf. notopterum MT365527, H. ganapatiae MT365528) and both differed by >7% from congeneric species. Although the pathogenicity and clinical manifestation of myxozoan in humans are poorly understood, consumption of raw fish meat with myxozoan infection was reported to be associated with diarrhea. Identification of current parasite fauna from N. notopterus is an essential first step in assessing pathogen risks to stocks of this important food fish.
    Matched MeSH terms: Virulence
  14. Wameadesa N, Sae-lim A, Hayeebilan F, Rattanachuay P, Sukhumungoon P
    PMID: 29642296
    Local Thai and imported Malaysian beef in southern Thailand area carry
    several Shiga toxin-producing Escherichia coli (STEC) serotypes. STEC O104 is an
    important pathogen capable of causing outbreaks with considerable morbidity
    and mortality. This study investigated the presence of E. coli O104 from local Thai
    and imported Malaysian beef obtained from markets in Hat Yai City, Songkhla
    Province during August 2015 - February 2016. Thirty-one E. coli O104 strains
    were isolated from 12 beef samples (16% and 23% Thai and imported Malaysian,
    respectively). Thirty strains possessed aggA (coding for a major component of
    AAF/I fimbriae), a gene associated with enteroaggregative E. coli (EAEC) pathotype,
    and all strains carried fimH (encoding Type 1 fimbriae). Thirty strains
    belonged to phylogenetic group B1 and one strain (from Malaysian beef) to group
    A. Agglutination of yeast cells was observed among 29 E. coli O104 strains. Investigation
    of stx2 phage occupancy loci demonstrated that sbcB was occupied in 12
    strains. Antimicrobial susceptibility assay revealed that 7 strains were resistant
    to at least one antimicrobial agent and two were multi-drug resistant. One strain
    carried extended spectrum β-lactamase gene blaCTX-M and three carried blaTEM. PFGE-generated DNA profiling showed identical DNA pattern between that of
    one EAEC O104 strain from Thai beef and another from Malaysian beef, indicating
    that these two strains originated from the same clone. This is the first report
    in Thailand describing the presence of EAEC O104 from both Thai and imported
    Malaysian beef and their transfer between both countries. Thorough surveillance
    of this pathogen in fresh meats and vegetables should help to prevent any possible
    outbreak of E. coli O104.
    Matched MeSH terms: Virulence Factors/analysis
  15. Khoo CH, Cheah YK, Lee LH, Sim JH, Salleh NA, Sidik SM, et al.
    Antonie Van Leeuwenhoek, 2009 Nov;96(4):441-57.
    PMID: 19565351 DOI: 10.1007/s10482-009-9358-z
    The increased occurrence of Salmonella occurrence in local indigenous vegetables and poultry meat can be a potential health hazards. This study is aimed to detect the prevalence of twenty different virulence factors among Salmonella enterica strains isolated from poultry and local indigenous vegetables in Malaysia via an optimized, rapid and specific multiplex PCR assay. The assay encompasses a total of 19 Salmonella pathogenicity islands genes and a quorum sensing gene (sdiA) in three multiplex reaction sets. A total of 114 Salmonella enterica isolates belonging to 38 different serovars were tested. Each isolate in under this study was found to possess up to 70% of the virulence genes tested and exhibited variable pathogenicity gene patterns. Reproducibility of the multiplex PCR assay was found to be 100% and the detection limit of the optimized multiplex PCR was tested with lowest detectable concentration of DNA 0.8 pg microl(-1). This study demonstrated various Salmonella pathogenicity island virulence gene patterns even within the same serovar. This sets of multiplex PCR system provide a fast and reliable typing approach based on Salmonella pathogenicity islands, thus enabling an effective monitoring of emerging pathogenic Salmonella strains as an additional tool in Salmonella surveillance studies.
    Matched MeSH terms: Virulence Factors/genetics*
  16. Kumar S, Karuppanan K, Subramaniam G
    J Med Virol, 2022 Oct;94(10):4780-4791.
    PMID: 35680610 DOI: 10.1002/jmv.27927
    The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread throughout the world. We used computational tools to assess the spike infectivity, transmission, and pathogenicity of Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) in this study. BA.1 has 39 mutations, BA.1.1 has 40 mutations, BA.2 has 31 mutations, and BA.3 has 34 mutations, with 21 shared mutations between all. We observed 11 common mutations in Omicron's receptor-binding domain (RBD) and sub-variants. In pathogenicity analysis, the Y505H, N786K, T95I, N211I, N856K, and V213R mutations in omicron and sub-variants are predicted to be deleterious. Due to the major effect of the mutations characterizing in the RBD, we found that Omicron and sub-variants had a higher positive electrostatic surface potential. This could increase interaction between RBD and negative electrostatic surface potential human angiotensin-converting enzyme 2 (hACE2). Omicron and sub-variants had a higher affinity for hACE2 and the potential for increased transmission when compared to the wild-type (WT). Negative electrostatic potential of N-terminal domain (NTD) of the spike protein value indicates that the Omicron variant binds receptors less efficiently than the WT. Given that at least one receptor is highly expressed in lung and bronchial cells, the electrostatic potential of NTD negative value could be one of the factors contributing to why the Omicron variant is thought to be less harmful to the lower respiratory tract. Among Omicron sub-lineages, BA.2 and BA.3 have a higher transmission potential than BA.1 and BA.1.1. We predicted that mutated residues in BA.1.1 (K478), BA.2 (R400, R490, and R495), and BA.3 (R397 and H499) formation of new salt bridges and hydrogen bonds. Omicron and sub-variant mutations at Receptor-binding Motif (RBM) residues such as Q493R, N501Y, Q498, T478K, and Y505H all contribute significantly to binding affinity with human ACE2. Interactions with Omicron variant mutations at residues 493, 496, 498, and 501 seem to restore ACE2 binding effectiveness lost due to other mutations like K417N.
    Matched MeSH terms: Virulence
  17. Loo, Y. Y., Puspanadan, S., Goh, S. G., Kuan, C. H., Chang, W. S., Lye, Y. L., et al.
    MyJurnal
    Foodborne diseases are mainly caused by bacterial contamination which can lead to severe diarrhea. This study aimed to detect the presence of Shiga toxin-Producing Escherichia coli O157, Escherichia coli non-O157 and virulence gene in raw vegetables. The samples were purchased from wet market and hypermarket in Selangor. The detections were carried out by using the combination methods of Most Probable Number-Polymerase Chain Reaction (MPNPCR). A total of 37(18.5%) samples were found to be contaminated by STEC. Out of these 37 isolates, four (10.8%) of the isolates were E. coli O157 while 33(89.2%) were E. coli nonO157. However, there was no E. coli O157:H7 detected in all the samples. The occurrence of Shiga toxin-Producing E. coli in edible raw vegetables samples suggests the importance of this pathogen in vegetables. Therefore, more studies are required to remove this pathogen from vegetables.
    Matched MeSH terms: Virulence
  18. Jeshveen, S.S., Chai, L.C., Pui, C.F., Son, R.
    MyJurnal
    The main source of E. coli 0157:H7 is cattle, but recent studies showed high percentage of outbreaks
    contributed by contaminated water. The occurrence of E. coli O157:H7 in environmental water samples poses a potential threat to human health. The aim of this study was to establish a protocol for the detection of the pathogen E. coli O157:H7 and E. coli virulence genes (eaeA, rfbE, hly, stx1, and stx2) in a multiplex PCR protocol using six specific primer pairs. The target genes produced species-specific amplicons at 625 bp, 397 bp, 296 bp, 166 bp, 210 bp and 484 bp for E. coli O157:H7 (fliCh7 gene) and virulence genes (eaeA, rfbE, hly, stx1, and stx2) respectively. The results obtained show that the established PCR protocol is suitable for a rapid and specific analysis of the pathogenic E. coli O157:H7 in environmental water samples for the assessment of microbiological risks.
    Matched MeSH terms: Virulence
  19. Yousr, A.H., Nipis, S., Rusul, G.R.A., Son, R.
    MyJurnal
    Polymerase chain reaction (PCR) technique was used to assay for the detection of specific genes in the genomes of the Aeromonas spp. isolated from environmental and shellfish sources, particularly aero and hlyA genes, responsible for aerolysin and hemolysin toxins production in this genus. The results showed that: (i) the 1500 bp amplicon of the hlyA gene was detected in 20/38 of the Aeromonas hydrophila, 13/38 of the A. caviae and 6/9 of the A. veronii biovar sobria isolates; (ii) the 690 bp amplicon of the aero gene was detected in 20/38 of A. hydrophila, 17/38 of A. caviae and 6/9 of A. veronii biovar sobria isolates; (iii) the nucleotide blast results of aerolysin gene sequences of the representative strains of A. hydrophila, A. caviae and A. veronii biovar sobria revealed a high homology of 94%, 95% and 95% with published sequences, respectively and ; (iv) the protein blast showed 97%, 94% and 96% homology when compared to the published sequences, respectively. The finding of A. hydrophila virulence genes in other members of the genus Aeromonas, may give a new perspective to the significance of these results. The method described here may be a useful detection tool to assist in further investigation of aero and hlyA genes in the genus Aeromonas, especially for food microbiologist.
    Matched MeSH terms: Virulence
  20. New, C.Y., Kantilal, H.K., Tan, M.T.H., Nakaguchi, Y., Nishibuchi, M., Son, R.
    MyJurnal
    Vibrio parahaemolyticus is recognized as a frequent causal agent of human gastroenteritis due to the consumption of raw, undercooked or mishandled seafood in many Asian countries. The number of V. parahaemolyticus cases reported is on the rise, and this becomes a concern to the Asian countries as seafood is favoured by Asians. This study aimed to detect and quantify V. parahaemolyticus in raw oysters and to determine the risk associated with the consumption of raw oysters. A total of 30 oyster samples were collected and analysed in this study. MPN-PCR and MPN-Plating methods were employed and carried out concurrently to determine the prevalence of V. parahaemolyticus in raw oysters. The results showed that the prevalence of total V. parahaemolyticus in oysters was 50.00% (15/30) where the MPN/g range was < 3 – > 11000 MPN/g for MPN-PCR method, and 40.00% (12/30) where the MPN/g range was < 3 – 4300 MPN/g for MPN-Plating method. MPN-PCR method was able to estimate the level of virulence (tdh+ and trh+) V. parahaemolyticus in the raw oysters where 10.00% (3/30) of samples were identified to be in a range of 3 – 30 MPN/g. A microbial risk assessment was conducted based on the enumeration data obtained from MPN-PCR method using @risk. The probability of illness annually was 1.76 X 10-6 with a prediction of 31 cases to occur with respect to the exposed Malaysian population, while the rate per 100,000 people was estimated to be at 0.104. In addition, the antibiogram of V. parahaemolyticus was determined using Kirby Bauer Disk Diffusion Test and the results indicated that the isolates were highly resistant towards Bacitracin (100.00%), Vancomycin (100.00%) and were least resistant to Chloramphenicol (8.70%). The MAR index of the isolates ranged from 0.17 to 0.50. In accordance with the results from this study, the consumption of raw oysters is a risk factor for V. parahaemolyticus infection and proactive actions should be taken to reduce the risk of the pathogen in order to improve public health.
    Matched MeSH terms: Virulence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links