Displaying publications 81 - 100 of 261 in total

Abstract:
Sort:
  1. Anderson D, Nathoo N, Lu JQ, Kowalewska-Grochowska KT, Power C
    J Neurovirol, 2018 06;24(3):376-378.
    PMID: 29508303 DOI: 10.1007/s13365-018-0620-x
    Sarcocystosis is a zoonotic infection that causes intestinal and muscular illnesses in humans. Sarcocystosis was until recently considered rare in humans. To complete their life cycle, Sarcocystis species require both a definitive and an intermediate host. Humans are the definitive host when infected by one of two species: Sarcocystis hominis (from eating undercooked beef) or Sarcocystis suihominis (from eating uncooked pork). Infection with either of these species results in intestinal sarcocystosis, causing a self-limited disease characterized by nausea, abdominal pain, and diarrhea. Humans act as the intermediate host when infected by Sarcocystis nesbitti, resulting in the markedly different clinical picture of muscular sarcocystosis. Most documented cases of muscular sarcocystosis were assumed to be acquired in Malaysia, in addition to other regions of Southeast Asia and India. Published cases of muscular sarcocystosis from the Middle East, Central and South America, and Africa are all rare. Although the clinical presentation of muscular sarcocystosis remains to be fully characterized, fever, myalgia, and headache are among the most common symptoms. Here, we report a patient from sub-Saharan Africa with chronic Sarcocystis myopathy and well-controlled HIV-AIDS.
    Matched MeSH terms: Zoonoses
  2. Polley L
    Int J Parasitol, 2005 Oct;35(11-12):1279-94.
    PMID: 16168994
    Wildlife are now recognised as an important source of emerging human pathogens, including parasites. This paper discusses the linkages between wildlife, people, zoonotic parasites and the ecosystems in which they co-exist, revisits definitions for 'emerging' and 're-emerging', and lists zoonotic parasites that can be acquired from wildlife including, for some, estimates of the associated global human health burdens. The paper also introduces the concepts of 'parasite webs' and 'parasite flow', provides a context for parasites, relative to other infectious agents, as causes of emerging human disease, and discusses drivers of disease emergence and re-emergence, especially changes in biodiversity and climate. Angiostrongylus cantonensis in the Caribbean and the southern United States, Baylisascaris procyonis in California and Georgia, Plasmodium knowlesi in Sarawak, Malaysia, Human African Trypanosomiasis, Sarcoptes scabiei in carnivores, and Cryptosporidium, Giardia and Toxoplasma in marine ecosystems are presented as examples of wildlife-derived zoonotic parasites of particular recent interest. An ecological approach to disease is promoted, as is a need for an increased profile for this approach in undergraduate and graduate education in the health sciences. Synergy among scientists and disciplines is identified as critical for the study of parasites and parasitic disease in wildlife populations. Recent advances in techniques for the investigation of parasite fauna of wildlife are presented and monitoring and surveillance systems for wildlife disease are discussed. Some of the limitations inherent in predictions for the emergence and re-emergence of infection and disease associated with zoonotic parasites of wildlife are identified. The importance of public awareness and public education in the prevention and control of emerging and re-emerging zoonotic infection and disease are emphasised. Finally, some thoughts for the future are presented.
    Matched MeSH terms: Zoonoses
  3. Daszak P, Tabor GM, Kilpatrick AM, Epstein J, Plowright R
    Ann N Y Acad Sci, 2004 Oct;1026:1-11.
    PMID: 15604464
    The last three decades have seen an alarming number of high-profile outbreaks of new viruses and other pathogens, many of them emerging from wildlife. Recent outbreaks of SARS, avian influenza, and others highlight emerging zoonotic diseases as one of the key threats to global health. Similar emerging diseases have been reported in wildlife populations, resulting in mass mortalities, population declines, and even extinctions. In this paper, we highlight three examples of emerging pathogens: Nipah and Hendra virus, which emerged in Malaysia and Australia in the 1990s respectively, with recent outbreaks caused by similar viruses in India in 2000 and Bangladesh in 2004; West Nile virus, which emerged in the New World in 1999; and amphibian chytridiomycosis, which has emerged globally as a threat to amphibian populations and a major cause of amphibian population declines. We discuss a new, conservation medicine approach to emerging diseases that integrates veterinary, medical, ecologic, and other sciences in interdisciplinary teams. These teams investigate the causes of emergence, analyze the underlying drivers, and attempt to define common rules governing emergence for human, wildlife, and plant EIDs. The ultimate goal is a risk analysis that allows us to predict future emergence of known and unknown pathogens.
    Matched MeSH terms: Zoonoses*
  4. Vincent AT, Schiettekatte O, Goarant C, Neela VK, Bernet E, Thibeaux R, et al.
    PLoS Negl Trop Dis, 2019 05;13(5):e0007270.
    PMID: 31120895 DOI: 10.1371/journal.pntd.0007270
    The causative agents of leptospirosis are responsible for an emerging zoonotic disease worldwide. One of the major routes of transmission for leptospirosis is the natural environment contaminated with the urine of a wide range of reservoir animals. Soils and surface waters also host a high diversity of non-pathogenic Leptospira and species for which the virulence status is not clearly established. The genus Leptospira is currently divided into 35 species classified into three phylogenetic clusters, which supposedly correlate with the virulence of the bacteria. In this study, a total of 90 Leptospira strains isolated from different environments worldwide including Japan, Malaysia, New Caledonia, Algeria, mainland France, and the island of Mayotte in the Indian Ocean were sequenced. A comparison of average nucleotide identity (ANI) values of genomes of the 90 isolates and representative genomes of known species revealed 30 new Leptospira species. These data also supported the existence of two clades and 4 subclades. To avoid classification that strongly implies assumption on the virulence status of the lineages, we called them P1, P2, S1, S2. One of these subclades has not yet been described and is composed of Leptospira idonii and 4 novel species that are phylogenetically related to the saprophytes. We then investigated genome diversity and evolutionary relationships among members of the genus Leptospira by studying the pangenome and core gene sets. Our data enable the identification of genome features, genes and domains that are important for each subclade, thereby laying the foundation for refining the classification of this complex bacterial genus. We also shed light on atypical genomic features of a group of species that includes the species often associated with human infection, suggesting a specific and ongoing evolution of this group of species that will require more attention. In conclusion, we have uncovered a massive species diversity and revealed a novel subclade in environmental samples collected worldwide and we have redefined the classification of species in the genus. The implication of several new potentially infectious Leptospira species for human and animal health remains to be determined but our data also provide new insights into the emergence of virulence in the pathogenic species.
    Matched MeSH terms: Zoonoses/microbiology
  5. Glennon EE, Restif O, Sbarbaro SR, Garnier R, Cunningham AA, Suu-Ire RD, et al.
    Vet J, 2018 03;233:25-34.
    PMID: 29486875 DOI: 10.1016/j.tvjl.2017.12.024
    Bat-borne viruses carry undeniable risks to the health of human beings and animals, and there is growing recognition of the need for a 'One Health' approach to understand their frequently complex spill-over routes. While domesticated animals can play central roles in major spill-over events of zoonotic bat-borne viruses, for example during the pig-amplified Malaysian Nipah virus outbreak of 1998-1999, the extent of their potential to act as bridging or amplifying species for these viruses has not been characterised systematically. This review aims to compile current knowledge on the role of domesticated animals as hosts of two types of bat-borne viruses, henipaviruses and filoviruses. A systematic literature search of these virus-host interactions in domesticated animals identified 72 relevant studies, which were categorised by year, location, design and type of evidence generated. The review then focusses on Africa as a case study, comparing research efforts in domesticated animals and bats with the distributions of documented human cases. Major gaps remain in our knowledge of the potential ability of domesticated animals to contract or spread these zoonoses. Closing these gaps will be necessary to fully evaluate and mitigate spill-over risks of these viruses, especially with global agricultural intensification.
    Matched MeSH terms: Zoonoses/transmission; Zoonoses/virology
  6. Kan SP, Pathmanathan R
    PMID: 1822870
    Sarcocystis is a tissue coccidian with an obligatory two-host life cycle. The sexual generations of gametogony and sporogony occur in the lamina propria of the small intestine of definitive hosts which shed infective sporocysts in their stools and present with intestinal sarcocystosis. Asexual multiplication occurs in the skeletal and cardiac muscles of intermediate hosts which harbor Sarcocystis cysts in their muscles and present with muscular sarcocystosis. In Malaysia, Sarcocystis cysts have been reported from many domestic and wild animals, including domestic and field rats, moonrats, bandicoots, slow loris, buffalo, and monkey, and man. The known definitive hosts for some species of Sarcocystis are the domestic cat, dog and the reticulated python. Human muscular sarcocystosis in Malaysia is a zoonotic infection acquired by contamination of food or drink with sporocysts shed by definitive hosts. The cysts reported in human muscle resembled those seen in the moonrat, Echinosorex gymnurus, and the long-tailed monkey, Macaca fascicularis. While human intestinal sarcocystosis has not been reported in Malaysia so far, it can be assumed that such cases may not be infrequent in view of the occurrence of Sarcocystis cysts in meat animals, such as buffalo. The overall seroprevalence of 19.8% reported among the main racial groups in Malaysia indicates that sarcocystosis (both the intestinal and muscular forms) may be emerging as a significant food-borne zoonotic infection in the country.
    Matched MeSH terms: Zoonoses*
  7. Garbuglia AR, Lapa D, Pauciullo S, Raoul H, Pannetier D
    Viruses, 2023 Oct 07;15(10).
    PMID: 37896839 DOI: 10.3390/v15102062
    Nipah virus (NiV) is a paramyxovirus responsible for a high mortality rate zoonosis. As a result, it has been included in the list of Blueprint priority pathogens. Bats are the main reservoirs of the virus, and different clinical courses have been described in humans. The Bangladesh strain (NiV-B) is often associated with severe respiratory disease, whereas the Malaysian strain (NiV-M) is often associated with severe encephalitis. An early diagnosis of NiV infection is crucial to limit the outbreak and to provide appropriate care to the patient. Due to high specificity and sensitivity, qRT-PCR is currently considered to be the optimum method in acute NiV infection assessment. Nasal swabs, cerebrospinal fluid, urine, and blood are used for RT-PCR testing. N gene represents the main target used in molecular assays. Different sensitivities have been observed depending on the platform used: real-time PCR showed a sensitivity of about 103 equivalent copies/reaction, SYBRGREEN technology's sensitivity was about 20 equivalent copies/reaction, and in multiple pathogen card arrays, the lowest limit of detection (LOD) was estimated to be 54 equivalent copies/reaction. An international standard for NiV is yet to be established, making it difficult to compare the sensitivity of the different methods. Serological assays are for the most part used in seroprevalence studies owing to their lower sensitivity in acute infection. Due to the high epidemic and pandemic potential of this virus, the diagnosis of NiV should be included in a more global One Health approach to improve surveillance and preparedness for the benefit of public health. Some steps need to be conducted in the diagnostic field in order to become more efficient in epidemic management, such as development of point-of-care (PoC) assays for the rapid diagnosis of NiV.
    Matched MeSH terms: Zoonoses
  8. Kliks MM, Palumbo NE
    Soc Sci Med, 1992 Jan;34(2):199-212.
    PMID: 1738873 DOI: 10.1016/0277-9536(92)90097-A
    The principal etiologic agent of human eosinophilic meningitis, Angiostrongylus cantonensis, was first detected in rats in Canton, China in 1933. The first human case was detected on Taiwan in 1944. Epidemic outbreaks were noted on Ponape (E. Caroline Is.) from 1944 to 1948. The disease may present as transient meningitis or a more severe disease involving the brain, spinal cord and nerve roots, with a characteristic eosinophilia of the peripheral blood and CSF. Since 1961 it has been known that human infections are usually acquired by purposeful or accidental ingestion of infective larvae in terrestrial mollusks, planaria and fresh-water crustacea. There is no effective specific treatment. The African land snail, Achatina fulica played an important role in the panpacific dispersal of the organism: it will be important in Africa in the future as well. Rats were, and will continue to be the principal agents of expansion of the parasite beyond the Indopacific area. During and just after WWII the parasite was introduced, and/or spread passively from South and Southeast Asia into the Western Pacific islands and eastward and southward through Micronesia, Melanesia, Australia and into Polynesia, sequestered in shipments of war material and facilitated by post-war commerce. In the 1950s numerous cases were identified for the first time on Sumatra, the Philippines, Taiwan, Saipan, New Caledonia, and as far east as Rarotonga and Tahiti. Then cases were detected in Vietnam, Thailand, Cambodia, Java, Sarawak, the New Hebrides, Guam and Hawaii during the 1960s. Subsequently in the Pacific Basin the disease has appeared on Okinawa, other Ryukyu islands, Honshu, Kyushu, New Britain, American Samoa and Western Samoa, Australia, Hong Kong, Bombay, India, Fiji and most recently in mainland China. The parasite in rats now occurs throughout the Indopacific Basin and littoral. Beyond the Indopacific region, the worm has been found in rodents in Madagascar (ca 1963), Cuba (1973), Egypt (1977), Puerto Rico (1984), New Orleans, Louisiana (1985) and Port Harcourt, Nigeria (1989). Human infections have now been detected in Cuba (1973), Réunion Island (1974) and Côte d'Ivoire (1979) and should be anticipated wherever infected rats of mollusks have been introduced. Caged primates became infected in zoos in Hong Kong (1978) and New Orleans and Nassau, Bahamas (1987). The use of mollusks and crustacea as famine foods, favored delicacies and medicines has resulted in numerous outbreaks and isolated infections. Economic and political instability, illicit trade, unsanitary peridomestic conditions and lack of health education promote the local occurrence and insidious global expansion of parasitic eosinophilic meningitis.(ABSTRACT TRUNCATED AT 400 WORDS)
    Matched MeSH terms: Zoonoses/parasitology*; Zoonoses/transmission
  9. Gamalo LE, Dimalibot J, Kadir KA, Singh B, Paller VG
    Malar J, 2019 Apr 24;18(1):147.
    PMID: 31014342 DOI: 10.1186/s12936-019-2780-4
    BACKGROUND: Macaca fascicularis (long-tailed macaque) is the most widespread species of macaque in Southeast Asia and the only species of monkey found naturally in the Philippines. The species is the natural host for the zoonotic malaria species, Plasmodium knowlesi and Plasmodium cynomolgi and for the potentially zoonotic species, Plasmodium inui. Moreover, other Plasmodium species such as Plasmodium coatneyi and Plasmodium fieldi are also natural parasites of M. fascicularis. The aims of this study were to identify and determine the prevalence of Plasmodium species infecting wild and captive long-tailed macaques from the Philippines.

    METHODS: A total of 95 blood samples from long-tailed macaques in the Philippines were collected from three locations; 30 were from captive macaques at the National Wildlife Rescue and Rehabilitation Center (NWRRC) in Luzon, 25 were from captive macaques at the Palawan Wildlife Rescue and Conservation Center (PWRCC) in Palawan and 40 were from wild macaques from Puerto Princesa Subterranean River National Park (PPSRNP) in Palawan. The Plasmodium spp. infecting the macaques were identified using nested PCR assays on DNA extracted from these blood samples.

    RESULTS: All 40 of the wild macaques from PPSRNP in Palawan and 5 of 25 captive macaques from PWRCC in Palawan were Plasmodium-positive; while none of the 30 captive macaques from the NWRRC in Luzon had any malaria parasites. Overall, P. inui was the most prevalent malaria parasite (44.2%), followed by P. fieldi (41.1%), P. cynomolgi (23.2%), P. coatneyi (21.1%), and P. knowlesi (19%). Mixed species infections were also observed in 39 of the 45 Plasmodium-positive macaques. There was a significant difference in the prevalence of P. knowlesi among the troops of wild macaques from PPSRNP.

    CONCLUSION: Wild long-tailed macaques from the island of Palawan, the Philippines are infected with P. knowlesi, P. inui, P. coatneyi, P. fieldi and P. cynomolgi. The prevalence of these Plasmodium spp. varied among the sites of collection and among troops of wild macaques at one site. The presence of these simian Plasmodium parasites, especially P. knowlesi and P. cynomolgi in the long-tailed macaques in Palawan presents risks for zoonotic transmission in the area.

    Matched MeSH terms: Zoonoses/epidemiology; Zoonoses/parasitology
  10. Nguyen VL, Colella V, Greco G, Fang F, Nurcahyo W, Hadi UK, et al.
    Parasit Vectors, 2020 Aug 15;13(1):420.
    PMID: 32799914 DOI: 10.1186/s13071-020-04288-8
    BACKGROUND: Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia.

    METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.

    RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).

    CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.

    Matched MeSH terms: Zoonoses
  11. Kitsutani P, Ohta M
    Nippon Rinsho, 2005 Dec;63(12):2143-53.
    PMID: 16363687
    Nipah virus (NiV) is a zoonotic paramyxovirus that was first recognized in 1999 as the causative agent of outbreaks of human encephalitis in Malaysia and Singapore, in association with severe respiratory and neurological disease in pigs. Since then, outbreaks of NiV encephalitis have also occurred in Bangladesh during 2001-2004, but without an association to infected swine or other animals. Although NiV infections typically result in acute encephalitis with high mortality, other clinical manifestations, including asymptomatic infection, relapsed encephalitis, and pulmonary disease, have been observed. The article will summarize the virology, epidemiology, clinical features, treatment, and control and prevention of NiV infections in humans.
    Matched MeSH terms: Zoonoses
  12. Azdayanti Muslim, Putri Shafinaz Sharudin, Atiqah Yunus, Norhabsah Omar, Alieya Zakaria, Norshafiqah Mohamad
    Sarcocystis spp. are obligate intracellular protozoan parasites which cause meat-borne parasitic disease. In Malaysia, sarcocystosis is seen as a potential emerging food-borne zoonosis after a series of large outbreak of human infections. Humans acquire infection either by ingestion of cyst in raw or undercooked infected meat or from sporocysts in contaminated food and water. The goal of this study is to identify the presence of sarcocystis parasites in meat of cattle, buffaloes, sheep and goats collected from local markets in Selangor, Malaysia. Methods: A total of 64 skeletal muscles samples (57 cattle, 2 buffaloes, 4 goats and 1 sheep) were collected from local markets. The samples were cut randomly into three pieces, squashed firmly between two glass slides and then examined microscopically for the presence of cysts. Results: Three samples of meat (4.69 %) from cattle (1), buffalo (1) and sheep (1) were found to be positive for cysts. The cysts were confirmed by PCR as sarcocystis sp. Conclusion: The results showed low prevalence of Sarcocystis infection in meat collected from local markets. However, since there is a transmission among the livestock, extra precaution should be taken in consideration to prevent the spreading of sarcocystosis from animals to human.
    Matched MeSH terms: Zoonoses
  13. Azdayanti Muslim, Putri Shafinaz Sharudin, Atiqah Yunus, Norhabsah Omar, Alieya Zakaria, Norshafiqah Mohamad
    MyJurnal
    Sarcocystis spp. are obligate intracellular protozoan parasites which cause meat-borne parasitic disease. In Malaysia, sarcocystosis is seen as a potential emerging food-borne zoonosis after a series of large outbreak of human infections. Humans acquire infection either by ingestion of cyst in raw or undercooked infected meat or from sporocysts in contaminated food and water. The goal of this study is to identify the presence of sarcocystis parasites in meat of cattle, buffaloes, sheep and goats collected from local markets in Selangor, Malaysia. Methods: A total of 64 skeletal muscles samples (57 cattle, 2 buffaloes, 4 goats and 1 sheep) were collected from local markets. The samples were cut randomly into three pieces, squashed firmly between two glass slides and then examined microscopically for the presence of cysts. Results: Three samples of meat (4.69 %) from cattle (1), buffalo (1) and sheep (1) were found to be positive for cysts. The cysts were confirmed by PCR as sarcocystis sp. Conclusion: The results showed low prevalence of Sarcocystis infection in meat collected from local markets. However, since there is a transmission among the livestock, extra precaution should be taken in consideration to prevent the spreading of sarcocystosis from animals to human.
    Matched MeSH terms: Zoonoses
  14. Abba Y, Ilyasu YM, Noordin MM
    Microb Pathog, 2017 Jul;108:49-54.
    PMID: 28478198 DOI: 10.1016/j.micpath.2017.04.038
    AIM: Captivity of non-venomous snakes such as python and boa are common in zoos, aquariums and as pets in households. Poor captivity conditions expose these reptiles to numerous pathogens which may result in disease conditions. The purpose of this study was to investigate the common bacteria isolated from necropsied captive snakes in Malaysia over a five year period.

    MATERIALS AND METHODS: A total of 27 snake carcasses presented for necropsy at the Universiti Putra Malaysia (UPM) were used in this survey. Samples were aseptically obtained at necropsy from different organs/tissues (lung, liver, heart, kindey, oesophagus, lymph node, stomach, spinal cord, spleen, intestine) and cultured onto 5% blood and McConkey agar, respectively. Gram staining, morphological evaluation and biochemical test such as oxidase, catalase and coagulase were used to tentatively identify the presumptive bacterial isolates.

    RESULTS: Pythons had the highest number of cases (81.3%) followed by anaconda (14.8%) and boa (3.7%). Mixed infection accounted for 81.5% in all snakes and was highest in pythons (63%). However, single infection was only observed in pythons (18.5%). A total of 82.7%, 95.4% and 100% of the bacterial isolates from python, anaconda and boa, respectively were gram negative. Aeromonas spp was the most frequently isolated bacteria in pythons and anaconda with incidences of 25 (18%) and 8 (36.6%) with no difference (p > 0.05) in incidence, respectively, while Salmonella spp was the most frequently isolated in boa and significantly higher (p 

    Matched MeSH terms: Zoonoses/microbiology*
  15. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, et al.
    Am J Pathol, 2002 Dec;161(6):2153-67.
    PMID: 12466131
    In 1998, an outbreak of acute encephalitis with high mortality rates among pig handlers in Malaysia led to the discovery of a novel paramyxovirus named Nipah virus. A multidisciplinary investigation that included epidemiology, microbiology, molecular biology, and pathology was pivotal in the discovery of this new human infection. Clinical and autopsy findings were derived from a series of 32 fatal human cases of Nipah virus infection. Diagnosis was established in all cases by a combination of immunohistochemistry (IHC) and serology. Routine histological stains, IHC, and electron microscopy were used to examine autopsy tissues. The main histopathological findings included a systemic vasculitis with extensive thrombosis and parenchymal necrosis, particularly in the central nervous system. Endothelial cell damage, necrosis, and syncytial giant cell formation were seen in affected vessels. Characteristic viral inclusions were seen by light and electron microscopy. IHC analysis showed widespread presence of Nipah virus antigens in endothelial and smooth muscle cells of blood vessels. Abundant viral antigens were also seen in various parenchymal cells, particularly in neurons. Infection of endothelial cells and neurons as well as vasculitis and thrombosis seem to be critical to the pathogenesis of this new human disease.
    Matched MeSH terms: Zoonoses*
  16. Philip N, Bahtiar Affendy N, Ramli SNA, Arif M, Raja P, Nagandran E, et al.
    PLoS Negl Trop Dis, 2020 Mar;14(3):e0008197.
    PMID: 32203511 DOI: 10.1371/journal.pntd.0008197
    BACKGROUND: Leptospirosis, commonly known as rat-urine disease, is a global but endemic zoonotic disease in the tropics. Despite the historical report of leptospirosis in Malaysia, the information on human-infecting species is limited. Determining the circulating species is important to understand its epidemiology, thereby to strategize appropriate control measures through public health interventions, diagnostics, therapeutics and vaccine development.

    METHODOLOGY/PRINCIPLE FINDINGS: We investigated the human-infecting Leptospira species in blood and serum samples collected from clinically suspected leptospirosis patients admitted to three tertiary care hospitals in Malaysia. From a total of 165 patients, 92 (56%) were confirmed cases of leptospirosis through Microscopic Agglutination Test (MAT) (n = 43; 47%), Polymerase Chain Reaction (PCR) (n = 63; 68%) or both MAT and PCR (n = 14; 15%). The infecting Leptospira spp., determined by partial 16S rDNA (rrs) gene sequencing revealed two pathogenic species namely Leptospira interrogans (n = 44, 70%) and Leptospira kirschneri (n = 17, 27%) and one intermediate species Leptospira wolffii (n = 2, 3%). Multilocus sequence typing (MLST) identified an isolate of L. interrogans as a novel sequence type (ST 265), suggesting that this human-infecting strain has a unique genetic profile different from similar species isolated from rodents so far.

    CONCLUSIONS/SIGNIFICANCE: Leptospira interrogans and Leptospira kirschneri were identified as the dominant Leptospira species causing human leptospirosis in Central Malaysia. The existence of novel clinically important ST 265 (infecting human), that is different from rodent L. interrogans strains cautions reservoir(s) of these Leptospira lineages are yet to be identified.

    Matched MeSH terms: Zoonoses
  17. Noordin R, Khanbabaie S, Hafiznur Yunus M, Marti H, Nickel B, Fasihi Harandi M, et al.
    Iran J Parasitol, 2020 10 22;15(3):290-298.
    PMID: 33082792 DOI: 10.18502/ijpa.v15i3.4191
    Background: Human echinococcosis is a neglected zoonotic disease distributed worldwide. It comprises cystic and alveolar forms, the former being the more prevalent disease. Imaging techniques are the first choice for diagnosis of cystic echinococcosis and serology is used as an additional diagnostic technique in doubtful cases or as the sole test in low-resource settings. Rapid diagnostic tests are useful and convenient for immunodiagnosis of cystic echinococcosis in endemic areas, where medical facilities often struggle with limited resources.

    Methods: Recently, we have developed Hyd Rapid™, an IgG4 lateral flow dipstick test using recombinant antigen B1 for detection of cystic echinococcosis. This study was performed between 2016 until 2018 at the Institute for Research in Molecular Medicine, Universiti Sains Malaysia. The diagnostic performance of Hyd Rapid™ was tested in-house and at two international laboratories in Switzerland and Iran.

    Results: The overall diagnostic sensitivity for detection of cystic and alveolar echinococcosis was 95% (56/59). Meanwhile, the diagnostic specificity, with and without exclusion of cysticercosis and fascioliasis, was 100% (n=48) and 88% (63/72), respectively.

    Conclusion: Hyd Rapid™ detected cystic echinococcosis as well as probable cases of alveolar echinococcosis. Therefore, Hyd Rapid™ showed good potential as a serological tool for echinococcosis, and merits further evaluation.

    Matched MeSH terms: Zoonoses
  18. Muul I
    Science, 1970 Dec 18;170(3964):1275-9.
    PMID: 5479006
    Insufficient use has been made of ecological data concerning potential hosts in studies to determine the life cycles of zoonotic parasites and pathogens. Factors such as the geographical distribution of hosts, the altitudes at which they live, their affinities for specific habitats, their vertical distribution within the habitat, and the periodicity of their activities have bearing on the hosts' predisposition to involvement in disease cycles. Diets and feeding habits may determine the likelihood of acquiring infection. Reproductive characteristics determine whether a species is suitable as a reservoir or as an amplifying host. Behavioral factors, such as selection of a particular kind of nest site, may also predispose the involvement of the host with parasites and pathogens. Behavior patterns may determine the maximum population densities of hosts. Estimates of population sizes, of relative abundances of species, and of the involvement of species in disease cycles may be strongly influenced by the collecting and sampling methods that are used and also by the behavioral response of the mammals toward collecting devices, such as traps.
    Matched MeSH terms: Zoonoses/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links