Displaying publications 81 - 90 of 90 in total

Abstract:
Sort:
  1. Kadir MA, Ramli R, Yusof MSM, Ismail N, Ngah N, Haris NSH
    Data Brief, 2019 Dec;27:104651.
    PMID: 31700958 DOI: 10.1016/j.dib.2019.104651
    This paper provided comprehensive data on spectroscopic and antibacterial activities of thioureido compounds which are relevant with research article entitled "Synthesis, Spectroscopic Studies and Antibacterial Activity of New Lauroyl Thiourea Amino Acid Derivatives" [1]. Based on the reported study, four new thioureido derivatives, namely 3-(3-dodecanoyl-thioureido)propionic acid (R1), 2-(3-dodecanoyl-thioureido)-3-methyl butyric acid (R2), (3-dodecanoyl-thioureido)acetic acid (R3) and 2-(3-dodecanoyl-thioureido)-3-phenyl propionic acid (R4) were characterized by elemental analysis, Fourier Transform Infrared (FTIR), 1H Nuclear Magnetic Resonance (1H NMR) and 13C Nuclear Magnetic Resonance (13C NMR), and Ultraviolet Visible spectroscopy (UV-Vis). The preliminary results from antibacterial assay which were tested against Gram-positive bacteria such as Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus and Gram-negative bacteria such as Escherichia coli, Salmonella typhimurium are also described.
    Matched MeSH terms: Bacillus subtilis
  2. Ul Haq MN, Wazir SM, Ullah F, Khan RA, Shah MS, Khatak A
    Sains Malaysiana, 2016;45:1435-1442.
    In this study, the antimicrobial, antioxidant, phytotoxic and phytochemical properties of defatted seeds of Jatropha curcas were evaluated. A crude methanolic extract of defatted seeds was tested against three fungal strains - Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus - and five bacteria: Escherichia coli and Klebsiella pneumoniae (Gram negative) and Micrococcus luteus, Bacillus subtilis and Staphylococcus aureus (Gram positive). The methanolic extract was diluted in dimethylsulfoxide to final concentrations of 1, 2, 3, 4 and 5 mg/10 mL. The largest zones of inhibition against K. pneumoniae, M. luteus and B. subtilis were achieved using the concentration of 5 mg/10 mL. The concentration of 1 mg/10 mL was most effective against S. aureus and E. coli. In a 1, 1-diphenyl-2-picrylahydrazyl (DPPH) radical scavenging assay, the 5 mg/10 mL concentration of the Jatropha seed extract showed the strongest activity. Higher concentrations of the Jatropha seed extract (10 mg/50 mL and 5 mg/50 mL) significantly inhibited the germination of radish seeds and had negative effects on radish seedling relative water content, shoot length, root length, seedling fresh weight and seedling dry weight (p<0.05). Phytochemical analyses of the defatted seeds detected alkaloids (7.3%), flavonoids (0.39%) and soluble phenolics (mg gallic acid equivalents/g extract). Based on these results, it was inferred that J. curcas seeds contain active ingredients that are effective against pathogenic microbes and therefore could be used to formulate drugs to treat various diseases.
    Matched MeSH terms: Bacillus subtilis
  3. Ling Onn M, Teen Lim P, Aazani Mujahid, Proksch P, Müller M
    Sains Malaysiana, 2016;45:1063-1071.
    Endophytic fungi provide protection to their host plant and the fungi often produce antimicrobial compounds to aid the host
    fighting off pathogens. These bioactive compounds were secondary metabolites which were often produced as waste- or
    by-products. In the present study, endophytic fungi isolated from mangrove plants and soils were characterized and their
    antimicrobial production and bioremediation potential of heavy metals copper (Cu) and zinc (Zn) were assessed. Twelve
    (12) isolated and identified endophytic fungi belonged to seven species; Penicillium, Curvularia, Diaporthe, Aspergillus,
    Guignardia, Neusartorya and Eupenicillium. Antimicrobial activities of these 12 fungal endophytes were tested against
    Gram negative bacteria; Bacillus subtilis, Staphylococcus aureus, Gram positive bacteria; Escherichia coli and fungi;
    Candida albicans and Aspergillus niger among others. Two isolates (related to Guignardia sp. and Neusartoya sp.) showed
    strong antimicrobial (and antifungal) activity whereas the rest showed no activity. Compounds were isolated from both
    isolates and screened using HPLC. Both isolates displayed chemically very interesting chromatograms as they possessed a
    high diversity of basic chemical structures and peaks over a wide range of polarities, with structures similar to Trimeric
    catechin and Helenalin among others. For bioremediation assessment, the results showed maximum biosorption capacity
    for two isolates related to Curvularia sp. and Neusartorya sp., with the former removing 25 mg Cu/g biomass and the
    latter removing 24 mg Zn/g biomass. Our results indicated the potential of mangrove endophytic fungi in producing
    bioactive compounds and also highlighted their potential for the treatment of heavy metal-contaminated wastewater.
    Matched MeSH terms: Bacillus subtilis
  4. Norziah, M.H., Bhat, R., Ahmad, M.
    MyJurnal
    The present study was aimed to investigate the efficacy of fenugreek seeds as a potential natural source of antioxidants and antimicrobials. Fenugreek seed (FS) extracts were prepared using ethanol (75%), methanol (75%) and water as extraction solvents. Ethanol (E-FSP), methanol (M-FSP), water (W-FSP) and hot water (HW-FSP) extracts were obtained from ground FS, whilst water extract (W-GeFS) was obtained from germinated FS. The results revealed that all extracts of the ground FS exhibited antioxidant and antimicrobial activities and the extractability of bioactive compounds in the presence of water was higher in germinated seeds (W-GeFS). Highest phenolic (156.3 mg GAE/ g) and flavonoid (38.5 mg CE/ g) contents were found in W-GeFS. It also showed the strongest DPPH radical-scavenging activity of 68 % inhibition at a lower concentration (0.06 mg/ ml). In addition, highest vitamin C equivalent antioxidant capacity (143.28 mg vitamin C/ g) with an IC50 value of 42.1 μg/ ml were found in W-GeFS. Based on disc diffusion method, W-GeFS exhibited highest antimicrobial activity against all tested bacterial pathogens (Bacillus subtilis, Staphylococcus aureus, and Escherichia coli). Thus, it can be concluded from the results that W-GeFS extract from germinating fenugreek seeds (W-GeFS) has the potential to be used as a natural source of bioactive compounds with varied applications in food industry especially, for active film packaging purposes to prolong the shelf-life of food products.
    Matched MeSH terms: Bacillus subtilis
  5. Haque RA, Choo SY, Budagumpi S, Iqbal MA, Al-Ashraf Abdullah A
    Eur J Med Chem, 2015 Jan 27;90:82-92.
    PMID: 25461313 DOI: 10.1016/j.ejmech.2014.11.005
    A series of benzimidazole-based N-heterocyclic carbene (NHC) proligands {1-benzyl-3-(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (1/4), 1,3-bis(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (2/5) and 1,3-bis(3-(2-methylbenzyl)-benzimidazolium-1-ylmethylbenzene dibromide/dihexafluorophosphate (3/6)} has been synthesized by the successive N-alkylation method. Ag complexes {1-benzyl-3-(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (7), 1,3-bis(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (8) and 1,3-bis(3-(2-methylbenzyl)-benzimidazol-2-ylidene)-1-ylmethylbenzene disilver(I) dihexafluorophosphate (9)} of NHC ligands have been synthesized by the treatment of benzimidazolium salts with Ag2O at mild reaction conditions. Both, NHC proligands and Ag-NHC complexes have been characterized by (1)H and (13)C{(1)H} NMR and FTIR spectroscopy and elemental analysis technique. Additionally, the structure of the NHC proligand 5 and the mononuclear Ag complexes 7 and 8 has been elucidated by the single crystal X-ray diffraction analysis. Both the complexes exhibit the same general structural motif with linear coordination geometry around the Ag centre having two NHC ligands. Preliminary in vitro antibacterial potentials of reported compounds against a Gram negative (Escherichia coli) and a Gram positive (Bacillus subtilis) bacteria evidenced the higher activity of mononuclear silver(I) complexes. The anticancer studies against the human derived colorectal cancer (HCT 116) and colorectal adenocarcinoma (HT29) cell lines using the MTT assay method, revealed the higher activity of Ag-NHC complexes. The benzimidazolium salts 4-6 and Ag-NHC complexes 7-9 displayed the following IC50 values against the HCT 116 and HT29 cell lines, respectively, 31.8 ± 1.9, 15.2 ± 1.5, 4.8 ± 0.6, 10.5 ± 1.0, 18.7 ± 1.6, 1.20 ± 0.3 and 245.0 ± 4.6, 8.7 ± 0.8, 146.1 ± 3.1, 7.6 ± 0.7, 5.5 ± 0.8, 103.0 ± 2.3 μM.
    Matched MeSH terms: Bacillus subtilis/drug effects*
  6. Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, et al.
    Int J Nanomedicine, 2015;10:2079-88.
    PMID: 25844038 DOI: 10.2147/IJN.S75874
    Polysaccharides are attracting the vigil eye of researchers in order to design the green synthesis of silver nanoparticles (Ag NPs) of diverse size, shape, and application. We report an environmentally friendly method to synthesize Ag NPs where no physical reaction conditions were employed. Hydroxypropylcellulose (HPC) was used as a template nanoreactor, stabilizer, and capping agent to obtain Ag NPs. Different concentrations of AgNO3 solutions (50 mmol, 75 mmol, and 100 mmol) were mixed with a concentrated aqueous solution of HPC and the progress of the reaction was monitored by noting color changes of the reaction mixture at different reaction times for up to 24 hours. Characteristic ultraviolet-visible spectroscopy (UV/Vis) absorption bands of Ag NPs were observed in the range of 388-452 nm. The morphology of the Ag NPs was studied by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy. The TEM images confirmed that the size of the Ag NPs was in the range of 25-55 nm. Powder X-ray diffraction studies showed that the crystal phase of the Ag NPs was face-centered cubic. The as-prepared Ag NPs were found to be stable, and no changes in size and morphology were observed after storage in HPC thin films over 1 year, as indicated by UV/Vis spectra. So, the present work furnishes a green and economical strategy for the synthesis and storage of stable Ag NPs. As-synthesized Ag NPs showed significant antimicrobial activity against different bacterial (Escherichia coli, Staphylococcus epidermidis, S. aureus, Bacillus subtilis, Pseudomonas aeruginosa) and fungal strains (Actinomycetes and Aspergillus niger).
    Matched MeSH terms: Bacillus subtilis/drug effects
  7. NA Bahaman, Raha Ahmad Raus, Yusilawati Ahmad Nor, Al Mamun, Abdullah, Noor Suhana Adzahar, Dayang Fredalina Basri
    MyJurnal
    Introduction: Traditionally, Mallotus paniculatus (Balik Angin) plant is used in the treatment of various
    diseases in rural areas such as remedy after childbirth, wound healing and fever. In this present study, four
    medicinal properties of the plant were investigated which included antibacterial, antifungal, anticancer and
    antioxidant activities. Materials and Methods: Potential medicinal compounds were extracted from the plant
    leaves by sonication with 3 different solvents namely ethanol, ethyl acetate and hexane respectively. The
    antibacterial and antifungal properties were determined using disc diffusion agar and broth dilution assay,
    the antioxidant activity by DPPH scavenging assay and the anticancer effect by MTT assay. Results: From the
    screening of the medicinal properties, M. paniculatus leave extracts were shown to possess antibacterial,
    antioxidant and anticancer properties but not antifungal properties. Ethanolic and ethyl acetate extracts of
    the leave were active against gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) but not
    gram negative bacteria (Pseudomonas aeruginosa and Escherichia coli). The antioxidant activity of the
    ethanolic crude extract was high; with IC50 of 30 μg/ml comparable with the positive controls; ascorbic acid
    and butylated hydroxytoluene (BHT). Both ethanolic and ethyl acetate extracts were cytotoxic against breast
    cancer (MCF7), colon cancer (HT-29), cervix cancer (Hela) cell lines. Conclusion: M. paniculatus leave
    extract has many potential medicinal values for further studies.
    Matched MeSH terms: Bacillus subtilis
  8. Kumari M, Tahlan S, Narasimhan B, Ramasamy K, Lim SM, Shah SAA, et al.
    BMC Chem, 2021 Jan 21;15(1):5.
    PMID: 33478538 DOI: 10.1186/s13065-020-00717-y
    BACKGROUND: Triazole is an important heterocyclic moiety that occupies a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and is used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, anti-urease, anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic and antimigraine agents.

    METHODS: The structures of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU as standards.

    RESULTS, DISCUSSION AND CONCLUSION: The biological screening results reveal that the compounds T5 (MICBS, EC = 24.7 µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1 µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro = 18.1 µM, MICAmo = 17.1 µM) and fluconazole (MICFlu = 20.4 µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01 µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml). The most potent anticancer activity was shown by compounds T2 (IC50 = 3.84 μM) and T7 (IC50 = 3.25 μM) against HCT116 cell lines as compared to standard 5-FU (IC50 = 25.36 μM).

    Matched MeSH terms: Bacillus subtilis
  9. Murugan K, Suresh U, Panneerselvam C, Rajaganesh R, Roni M, Aziz AT, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10456-10470.
    PMID: 28913784 DOI: 10.1007/s11356-017-0074-3
    The development of novel mosquito control tools is a key prerequisite to build effective and reliable Integrated Vector Management strategies. Here, we proposed a novel method using cigarette butts for the synthesis of Ag nanostructures toxic to young instars of the malaria vector Anopheles stephensi, chloroquine (CQ)-resistant malaria parasites Plasmodium falciparum and microbial pathogens. The non-target impact of these nanomaterials in the aquatic environment was evaluated testing them at sub-lethal doses on the predatory copepod Mesocyclops aspericornis. Cigarette butt-synthesized Ag nanostructures were characterized by UV-vis and FTIR spectroscopy, as well as by EDX, SEM and XRD analyses. Low doses of cigarette butt extracts (with and without tobacco) showed larvicidal and pupicidal toxicity on An. stephensi. The LC50 of cigarette butt-synthesized Ag nanostructures ranged from 4.505 ppm (I instar larvae) to 8.070 ppm (pupae) using smoked cigarette butts with tobacco, and from 3.571 (I instar larvae) to 6.143 ppm (pupae) using unsmoked cigarette butts without tobacco. Smoke toxicity experiments conducted against adults showed that unsmoked cigarette butts-based coils led to mortality comparable to permethrin-based positive control (84.2 and 91.2%, respectively). A single treatment with cigarette butts extracts and Ag nanostructures significantly reduced egg hatchability of An. stephensi. Furthermore, the antiplasmodial activity of cigarette butt extracts (with and without tobacco) and synthesized Ag nanostructures was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. The lowest IC50 values were achieved by cigarette butt extracts without tobacco, they were 54.63 μg/ml (CQ-s) and 63.26 μg/ml (CQ-r); while Ag nanostructure IC50 values were 72.13 μg/ml (CQ-s) and 77.33 μg/ml (CQ-r). In MIC assays, low doses of the Ag nanostructures inhibited the growth of Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi. Finally, the predation efficiency of copepod M. aspericornis towards larvae of An. stephensi did not decrease in a nanoparticle-contaminated environment, if compared to control predation assays. Overall, the present research would suggest that an abundant hazardous waste, such as cigarette butts, can be turned to an important resource for nanosynthesis of highly effective antiplasmodials and insecticides.
    Matched MeSH terms: Bacillus subtilis
  10. Lau ET, Tani A, Khew CY, Chua YQ, Hwang SS
    Microbiol Res, 2020 Nov;240:126549.
    PMID: 32688172 DOI: 10.1016/j.micres.2020.126549
    Black pepper production in Malaysia was restricted by various diseases. Hazardous chemical products appear to be the best solution to control diseases in black pepper cultivation. However, persistence of chemical residues in peppercorns could affect the quality of exports and consumptions. Application of fertilizers is crucial to sustain pepper growth and high yield. But, continuous use of chemical fertilizers could affect the soil ecosystem and eventually restrict nutrient uptake by pepper roots. Therefore, we propose biological approaches as an alternative solution instead of chemical products to sustain pepper cultivation in Malaysia. In this study, we have isolated a total of seven indigenous rhizobacteria antagonistic to soil-borne Fusarium solani, the causal fungus of slow decline, the most serious debilitating disease of black pepper in Malaysia. The isolated bacteria were identified as Bacillus subtilis, Bacillus siamensis, Brevibacillus gelatini, Pseudomonas geniculata, Pseudomonas beteli, Burkholderia ubonensis and Burkholderia territorii. These bacteria were effective in production of antifungal siderophore with the amount of 53.4 %-73.5 % per 0.5 mL of cell-free supernatants. The bacteria also produced appreciable amount of chitinase with chitinolytic index was ranged from 1.19 to 1.76. The bacteria have shown phosphate solubilizing index within 1.61 to 2.01. They were also efficient in ACC deaminase (0.52 mM-0.62 mM) and ammonia (60.3 mM-75.3 mM) production. The isolated antagonists were efficacious in stimulation of black pepper plant growth and root development through IAA (10.5 μg/mL-42.6 μg/mL) secretion. In conclusion, the isolated rhizobacteria are potent to be developed not only as biocontrol agents to minimize the utilization of hazardous chemicals in black pepper disease management, but also developed as bio-fertilizers to improve black pepper plant growth due to their capabilities in plant growth-promotion.
    Matched MeSH terms: Bacillus subtilis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links