AREAS COVERED: Furanones, glycosylated chemicals, heavy metals, and nanomaterials are considered QS inhibitors (QSIs) and are therefore capable of inhibiting the microbial QS system. QSIs are currently being considered as antimicrobial therapeutic options. Currently, the low speed at which new antimicrobial agents are being developed impairs the treatment of drug-resistant infections. Therefore, QSIs are currently being studied as potential interventions targeting QS-signaling molecules and quorum quenching (QQ) enzymes to reduce microbial virulence.
EXPERT OPINION: QSIs represent a novel opportunity to combat antimicrobial resistance (AMR). However, no clinical trials have been conducted thus far assessing their efficacy. With the recent advancements in technology and the development of well-designed clinical trials aimed at targeting various components of the, QS system, these agents will undoubtedly provide a useful alternative to treat infectious diseases.
METHODS: Fifty-one adult patients with suspected bacterial sepsis on admission to the Emergency Department (ED) of a teaching hospital were included into the study. All relevant cultures and serology tests were performed. Serum levels for Group II Secretory Phospholipase A2 (sPLA2-IIA) and CD64 were subsequently analyzed.
RESULTS AND DISCUSSION: Sepsis was confirmed in 42 patients from a total of 51 recruited subjects. Twenty-one patients had culture-confirmed bacterial infections. Both biomarkers were shown to be good in distinguishing sepsis from non-sepsis groups. CD64 and sPLA2-IIA also demonstrated a strong correlation with early sepsis diagnosis in adults. The area under the curve (AUC) of both Receiver Operating Characteristic curves showed that sPLA2-IIA was better than CD64 (AUC = 0.93, 95% confidence interval (CI) = 0.83-0.97 and AUC = 0.88, 95% CI = 0.82-0.99, respectively). The optimum cutoff value was 2.13μg/l for sPLA2-IIA (sensitivity = 91%, specificity = 78%) and 45 antigen bound cell (abc) for CD64 (sensitivity = 81%, specificity = 89%). In diagnosing bacterial infections, sPLA2-IIA showed superiority over CD64 (AUC = 0.97, 95% CI = 0.85-0.96, and AUC = 0.95, 95% CI = 0.93-1.00, respectively). The optimum cutoff value for bacterial infection was 5.63μg/l for sPLA2-IIA (sensitivity = 94%, specificity = 94%) and 46abc for CD64 (sensitivity = 94%, specificity = 83%).
CONCLUSIONS: sPLA2-IIA showed superior performance in sepsis and bacterial infection diagnosis compared to CD64. sPLA2-IIA appears to be an excellent biomarker for sepsis screening and for diagnosing bacterial infections, whereas CD64 could be used for screening bacterial infections. Both biomarkers either alone or in combination with other markers may assist in decision making for early antimicrobial administration. We recommend incorporating sPLA2-IIA and CD64 into the diagnostic algorithm of sepsis in ED.