Displaying publications 81 - 100 of 248 in total

Abstract:
Sort:
  1. Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N
    Eur J Nutr, 2017 Mar;56(2):591-601.
    PMID: 26593435 DOI: 10.1007/s00394-015-1103-y
    PURPOSE: The present study was undertaken to explore the possible anti-diabetic mechanism(s) of Emblica officinalis (EO) and its active constituent, ellagic acid (EA), in vitro and in vivo.

    METHOD: Neonatal streptozotocin-induced non-obese type 2 diabetic rats were treated with a methanolic extract of EO (250 or 500 mg/kg) for 28 days, and blood glucose, serum insulin, and plasma antioxidant status were measured. Insulin and glucagon immunostaining and morphometry were performed in pancreatic section, and liver TBARS and GSH levels were measured. Additionally, EA was tested for glucose-stimulated insulin secretion and glucose tolerance test.

    RESULTS: Treatment with EO extract resulted in a significant decrease in the fasting blood glucose in a dose- and time-dependent manner in the diabetic rats. It significantly increased serum insulin in the diabetic rats in a dose-dependent manner. Insulin-to-glucose ratio was also increased by EO treatment. Immunostaining of pancreas showed that EO250 increased β-cell size, but EO500 increased β-cells number in diabetic rats. EO significantly increased plasma total antioxidants and liver GSH and decreased liver TBARS. EA stimulated glucose-stimulated insulin secretion from isolated islets and decreased glucose intolerance in diabetic rats.

    CONCLUSION: Ellagic acid in EO exerts anti-diabetic activity through the action on β-cells of pancreas that stimulates insulin secretion and decreases glucose intolerance.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  2. Forid MS, Rahman MA, Aluwi MFFM, Uddin MN, Roy TG, Mohanta MC, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361788 DOI: 10.3390/molecules26154634
    This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Combretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic effects in a Long-Evans rat model. After a one-week intervention, the animals' blood glucose, lipid profile, and pancreatic architectures were evaluated. UPLC-QTOF/ESI-MS fragmentation of CILEx and its eight docking-guided compounds were further dissected to evaluate their roles using bioinformatics-based network pharmacological tools. Results showed a very promising antioxidative effect of CILEx. Both doses of CILEx were found to significantly (p < 0.05) reduce blood glucose, low-density lipoprotein (LDL), and total cholesterol (TC), and increase high-density lipoprotein (HDL). Pancreatic tissue architectures were much improved compared to the diabetic control group. A computational approach revealed that schizonepetoside E, melianol, leucodelphinidin, and arbutin were highly suitable for further therapeutic assessment. Arbutin, in a Gene Ontology and PPI network study, evolved as the most prospective constituent for 203 target proteins of 48 KEGG pathways regulating immune modulation and insulin secretion to control diabetes. The fragmentation mechanisms of the compounds are consistent with the obtained effects for CILEx. Results show that the natural compounds from CILEx could exert potential antidiabetic effects through in vivo and computational study.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*; Diabetes Mellitus, Experimental/genetics; Diabetes Mellitus, Experimental/metabolism; Diabetes Mellitus, Experimental/pathology
  3. George S, Ajikumaran Nair S, Johnson AJ, Venkataraman R, Baby S
    J Ethnopharmacol, 2015 Jun 20;168:158-63.
    PMID: 25858510 DOI: 10.1016/j.jep.2015.03.060
    Melicope lunu-ankenda leaves are used to treat diabetes in folklore medicinal practices in India and Malaysia. Here we report the isolation of an O-prenylated flavonoid (3,5,4'-trihydroxy-8,3'-dimethoxy-7-(3-methylbut-2-enoxy)flavone; OPF) from the leaves of M. lunu-ankenda and its antidiabetes activity against type-2 diabetes mellitus (T2DM).
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood; Diabetes Mellitus, Experimental/drug therapy*; Diabetes Mellitus, Experimental/metabolism
  4. Giribabu N, Kumar KE, Rekha SS, Muniandy S, Salleh N
    Int J Med Sci, 2014;11(11):1172-84.
    PMID: 25249786 DOI: 10.7150/ijms.9056
    The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes.
    METHODS: C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated.
    RESULTS: C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-β cell functioning index, number of Islets/pancreas, number of β-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats.
    CONCLUSIONS: C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes.
    KEYWORDS: Chlorophytum borivilianum; diabetes; glucose; lipid profile; oxidative stress.; pancreas
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood*; Diabetes Mellitus, Experimental/drug therapy*
  5. Giribabu N, Karim K, Kilari EK, Nelli SR, Salleh N
    Inflammopharmacology, 2020 Dec;28(6):1599-1622.
    PMID: 32588370 DOI: 10.1007/s10787-020-00733-3
    Centella asiatica is claimed to have a neuroprotective effect; however, its ability to protect the cerebrum against damage in diabetes has never been identified. The aims were to identify the possibility that C. asiatica ameliorates inflammation, oxidative stress, and apoptosis in the cerebrum in diabetes. C. asiatica leave aqueous extract (C. asiatica) (50, 100, and 200 mg/kg/b.w.) were given to diabetic rats for 28 days. Changes in rats' body weight, food and water intakes, and insulin and FBG levels were monitored. Following sacrificed, cerebrum was harvested and subjected for histological, biochemical, and molecular biological analyses. The results revealed treatment with C. asiatica was able to ameliorate the loss in body weight, the increase in food and water intakes, the decrease in insulin, and the increase in FBG levels in diabetic rats. Additionally, histopathological changes in the cerebrum and levels of p38, ERK, JNK, cytosolic Nrf2, Keap-1, LPO, RAGE, and AGE levels decreased; however, PI3K, AKT, IR, IRS, GLUT-1, nuclear Nrf2, Nqo-1, Ho-1, and anti-oxidative enzymes (SOD, CAT, and GPx) levels increased in diabetic rats receiving C. asiatica. Furthermore, C. asiatica treatment also caused cerebral inflammation and apoptosis to decrease as indicated by decreased inflammatory markers (cytosolic NF-κB p65, p-Ikkβ, Ikkβ, iNOS, COX-2, TNF-α, IL-6, and IL-1β), decreased pro-apoptosis markers (Casp-3, 9, and Bax), but increased anti-apoptosis marker, Bcl-2. Activity level of Na+/K+, Mg2+, and Ca2+-ATPases in the cerebrum also increased by C. asiatica treatment. Conclusions: C. asiatica treatment helps to prevent cerebral damage and maintain near normal cerebral function in diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy; Diabetes Mellitus, Experimental/metabolism
  6. Giribabu N, Roslan J, Rekha SS, Salleh N
    Int J Cardiol, 2016 Nov 01;222:850-65.
    PMID: 27522389 DOI: 10.1016/j.ijcard.2016.07.250
    BACKGROUND: We hypothesized that consumption of Vitis vinifera seed by diabetics could help to ameliorate myocardial damage. Therefore, in this study, we investigated effects of V. vinifera seed methanolic extract (VVSME) on parameters related to myocardial damage in diabetes with or without myocardial infarction (MI).

    METHODS: Streptozotocin-nicotinamide induced diabetic rats received oral VVSME for 28days. MI was induced by intraperitoneal injection of isoproterenol on last two days. Prior to sacrifice, blood was collected and fasting blood glucose (FBG), glycated hemoglobin (HbA1c), lipid profile and insulin levels were measured. Levels of serum cardiac injury marker (troponin-I and CK-MB) were determined and histopathological changes in the heart were observed following harvesting. Levels of oxidative stress (LPO, SOD, CAT, GPx and RAGE), inflammation (NF-κB, TNF-α, IL-1β and IL-6) and cardiac ATPases (Na(+)/K(+)-ATPase and Ca(2+)-ATPase) were determined in heart homogenates. LC-MS was used to identify constituents in the extracts.

    RESULTS: Consumption of VVSME by diabetic rats with or without MI improved the metabolic profiles while decreased the cardiac injury marker levels with lesser myocardial damage observed. Additionally, VVSME consumption reduced the levels of LPO, RAGE, TNF-α, Iκκβ, NF-κβ, IL-1β and IL-6 while increased the levels of SOD, CAT, GPx, Na(+)/K(+)-ATPase and Ca(2+)-ATPase in the infarcted and non-infarcted heart of diabetic rats (p<0.05). LC-MS analysis revealed 17 major compounds in VVSME which might be responsible for the observed effects.

    CONCLUSIONS: Consumption of VVSME by diabetics helps to ameliorate damage to the infarcted and non-infarcted myocardium by decreasing oxidative stress, inflammation and cardiac ATPases dysfunctions.

    Matched MeSH terms: Diabetes Mellitus, Experimental*
  7. Giribabu N, Karim K, Kilari EK, Salleh N
    J Ethnopharmacol, 2017 Jun 09;205:123-137.
    PMID: 28483637 DOI: 10.1016/j.jep.2017.05.002
    ETHNOPHARMACOLOGICAL RELEVANCE: Phylanthus niruri has been used to treat ailments related to the urogenital organs. In this study, this herb was hypothesized to help to ameliorate kidney disease in diabetes mellitus (DM).

    AIMS: To investigate P. niruri leaves aqueous extract (PN) effects on kidney functions, histopathological changes and levels of oxidative stress, inflammation, fibrosis, apoptosis and proliferation in DM.

    METHODS: PN was orally administered to streptozotocin-nicotinamide-induced male diabetic rats for 28 days. At the end of the treatment, fasting blood glucose (FBG) and kidney functions were measured. Kidney somatic index, histopathological changes and levels of RAGE, Nrf2, oxidative stress markers (TBARS, SOD, CAT and GPx), inflammatory markers (NFkβ-p65, Ikk-β, TNF-α, IL-1β and IL-6), apoptosis markers (caspase-3, caspase-9 and Bax), fibrosis markers (TGF-β1, VEGF and FGF-1) and proliferative markers (PCNA and Ki-67) were determined by biochemical assays, qPCR, Western blotting, immunohistochemistry or immunofluorescence.

    RESULTS: Administration of PN helps to maintain near normal FBG, creatinine clearance (CCr), blood urea nitrogen (BUN), BUN/Cr ratio, serum electrolytes, uric acid and urine protein levels in DM. Decreased RAGE, TBARS and increased Nrf2, SOD-1, CAT and GPx-1 were observed in PN-treated diabetic rat kidneys. Expression of inflammatory, fibrosis and apoptosis markers in the kidney reduced but expression of proliferative markers increased following PN treatment. Lesser histopathological changes were observed in the kidney of PN-treated diabetic rats.

    CONCLUSION: PN helps to preserve near normal kidney function and prevents histopathological changes via ameliorating oxidative stress, inflammation, fibrosis and apoptosis while enhancing proliferation of the kidney in DM.

    Matched MeSH terms: Diabetes Mellitus, Experimental
  8. Giribabu N, Karim K, Kilari EK, Kassim NM, Salleh N
    Can J Diabetes, 2018 Apr;42(2):138-149.
    PMID: 28673757 DOI: 10.1016/j.jcjd.2017.04.005
    OBJECTIVES: Consumption of Vitis vinifera seed has been reported to ameliorate liver pathology in diabetes mellitus; however, the mechanisms underlying its effects remain unknown. In this study, the anti-inflammatory, anti-apoptotic and pro-proliferative effects of the ethanolic seed extract of V. vinifera (VVSEE) in the liver in cases of diabetes were identified.

    METHODS: Adult male rats with streptozotocin-nicotinamide-induced diabetes were given 50, 100 or 200 mg/kg body weight VVSEE orally for 28 days. At the end of the treatment, body weights were determined, and the blood was collected for analyses of fasting blood glucose, insulin and liver enzyme levels. Following sacrifice, livers were harvested and their wet weights and glycogen contents were measured. Histologic appearances of the livers were observed under light microscopy, and the expression and distribution of inflammatory, apoptosis and proliferative markers in the livers were identified by molecular biologic techniques.

    RESULTS: Treatment of rats with diabetes by VVSEE attenuates decreased body weight, liver weight and liver glycogen content. Additionally, increases in fasting blood glucose levels and liver enzyme levels and decreases in serum insulin levels were ameliorated. Lesser histopathologic changes were also observed: decreased inflammation and apoptosis, as indicated by decreased levels of inflammatory markers (TNF-α, NF-Kβ, IKK-β, IL-6, IL-1β) and apoptosis markers (caspase-3, caspase-9 and Bax). VVSEE treatment induces increase in hepatocyte regeneration, as indicated by increased PCNA and Ki-67 distribution in the livers of rats with diabetes. Several molecules identified in VVSEE via gas chromatography mass spectrometry might contribute to these effects.

    CONCLUSIONS: The anti-inflammatory, anti-apoptotic and pro-proliferative effects of VVSEE could account for its hepatoprotective actions in diabetes.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  9. Giribabu N, Eswar Kumar K, Swapna Rekha S, Muniandy S, Salleh N
    PMID: 25852767 DOI: 10.1155/2015/542026
    The effect of V. vinifera seeds on carbohydrate metabolizing enzymes and other enzymes of the liver in diabetes is currently unknown. We therefore investigated changes in the activity levels of these enzymes following V. vinifera seed extract administration to diabetic rats. Methods. V. vinifera seed ethanolic extract (250 and 500 mg/kg/day) or glibenclamide (600 μg/kg/day) was administered to streptozotocin-induced male diabetic rats for 28 consecutive days. At the end of treatment, liver was harvested and activity levels of various liver enzymes were determined. Levels of thiobarbituric acid reactive substances (TBARS) were measured in liver homogenates and liver histopathological changes were observed. Results. V. vinifera seed ethanolic extract was able to prevent the decrease in ICDH, SDH, MDH, and G-6-PDH and the increase in LDH activity levels in liver homogenates. The seed extract also caused serum levels of ALT, AST, ALP, ACP, GGT, and total bilirubin to decrease while causing total proteins to increase. Additionally, the levels of ALT, AST, and TBARS in liver homogenates were decreased. Histopathological changes in the liver were reduced. Conclusion. Near normal activity levels of various enzymes and histology of the liver following V. vinifera seed ethanolic extract administration may be due to decrease in liver oxidative stress in diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  10. Giribabu N, Srinivasarao N, Swapna Rekha S, Muniandy S, Salleh N
    PMID: 25161691 DOI: 10.1155/2014/592062
    Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ-) induced adult male diabetic rats received 100 and 200 mg/kg/day body weight (b.w) C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na(+)/K(+)-, Ca(2+)- and Mg(2+)-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-α; interleukin, IL-6; and interleukin, IL-1β) and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx) were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  11. Giribabu N, Rao PV, Kumar KP, Muniandy S, Swapna Rekha S, Salleh N
    PMID: 24991228 DOI: 10.1155/2014/834815
    P. niruri has been reported to possess antidiabetic and kidney protective effects. In the present study, the phytochemical constituents and in vitro antioxidant activity of P. niruri leaf aqueous extract were investigated together with its effect on oxidative stress and antioxidant enzymes levels in diabetic rat kidney. Results. Treatment of diabetic male rats with P. niruri leaf aqueous extract (200 and 400 mg/kg) for 28 consecutive days prevents the increase in the amount of lipid peroxidation (LPO) product, malondialdehyde (MDA), and the diminution of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity levels in the kidney of diabetic rats. The amount of LPO showed strong negative correlation with SOD, CAT, and GPx activity levels. P. niruri leaf aqueous extract exhibits in vitro antioxidant activity with IC50 slightly lower than ascorbic acid. Phytochemical screening of plant extract indicates the presence of polyphenols. Conclusion. P. niruri leaf extract protects the kidney from oxidative stress induced by diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  12. Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, et al.
    Phytomedicine, 2015 Feb 15;22(2):297-300.
    PMID: 25765836 DOI: 10.1016/j.phymed.2015.01.003
    Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro.
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/drug therapy*
  13. Hamzah N, Safuan S, Wan Ishak WR
    Molecules, 2021 Jun 16;26(12).
    PMID: 34208534 DOI: 10.3390/molecules26123665
    Endothelial cell dysfunction is considered to be one of the major causes of vascular complications in diabetes. Polyphenols are known as potent antioxidants that can contribute to the prevention of diabetes. Corn silk has been reported to contain polyphenols and has been used in folk medicine in China for the treatment of diabetes. The present study aims to investigate the potential protective role of the phenolic-rich fraction of corn silk (PRF) against injuries to vascular endothelial cells under high glucose conditions in vitro and in vivo. The protective effect of PRF from high glucose toxicity was investigated using human umbilical vein endothelial cells (HUVECs). The protective effect of PRF was subsequently evaluated by using in vivo methods in streptozotocin (STZ)-induced diabetic rats. Results showed that the PRF significantly reduced the cytotoxicity of glucose by restoring cell viability in a dose-dependent manner. PRF was also able to prevent the histological changes in the aorta of STZ-induced diabetic rats. Results suggested that PRF might have a beneficial effect on diabetic patients and may help to prevent the development and progression of diabetic complications such as diabetic nephropathy and atherosclerosis.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  14. Hani H, Allaudin ZN, Mohd-Lila MA, Ibrahim TA, Othman AM
    Xenotransplantation, 2014 Mar-Apr;21(2):174-82.
    PMID: 24645790 DOI: 10.1111/xen.12087
    BACKGROUND: Type 1 diabetes mellitus is a devastating disease for which there is currently no cure, but only lifetime management. Islet xenotransplantation is a promising technique for the restoration of blood glucose control in patients with diabetes mellitus. The purpose of this study was to explore the potential use of caprine (goat) islet cells as xenogeneic grafts in the treatment for diabetes in a mouse model.
    METHODS: Caprine pancreases were harvested and transported to the laboratory under conditions optimized to prevent ischemia. Islets were isolated, purified, and tested for functionality. Caprine islets (2000 islet equivalent) were transplanted beneath the kidney capsules of diabetic BALB/c mice under thalidomide-induced immunosuppression. Blood glucose and insulin levels of grafted mice were evaluated by glucometer and enzyme-linked immunosorbent assay kit, respectively. The functionality and quality of caprine pancreatic islet grafts were assessed by intraperitoneal glucose tolerance tests.
    RESULTS: The viability of purified islet cells exceeded 90%. Recipient mice exhibited normoglycemia (<11 mM glucose) for 30 days. In addition, weight gain negatively correlated with blood glucose level. The findings verified diabetes reversal in caprine islet recipient mice. A significant drop in non-fasting blood glucose level (from 23.3 ± 5.4 to 8.04 ± 0.44 mM) and simultaneous increase in serum insulin level (from 0.01 ± 0.001 to 0.56 ± 0.17 μg/l) and body weights (from 23.64 ± 0.31 to 25.85 ± 0.34 g) were observed (P < 0.05). Immunohistochemical analysis verified insulin production in the transplanted islets.
    CONCLUSIONS: Purified caprine islets were demonstrated to successfully sustain viability and functionality for controlling blood glucose levels in an immunosuppressed mouse model of diabetes. These results suggest the use of caprine islets as an addition to the supply of xenogeneic islets for diabetes research.
    KEYWORDS: caprine islets; streptozotocin‐injected mice; type 1 diabetes; xenotransplantation
    Matched MeSH terms: Diabetes Mellitus, Experimental/surgery*
  15. Hani H, Allaudin ZN, Tengku Ibrahim TA, Mohd-Lila MA, Sarsaifi K, Camalxaman SN, et al.
    In Vitro Cell Dev Biol Anim, 2015 Feb;51(2):113-20.
    PMID: 25303943 DOI: 10.1007/s11626-014-9821-7
    Pancreatic islet transplantation is commonly used to treat diabetes. Cell isolation and purification methods can affect the structure and function of the isolated islet cells. Thus, the development of cell isolation techniques that preserve the structure and function of pancreatic islet cells is essential for enabling successful transplantation procedures. The impact of purification procedures on cell function can be assessed by performing ultrastructure and in vivo studies. Thus, the aim of this study was to evaluate the effect of caprine islets purification procedure on islet cell ultrastructure and functional integrity prior to and post-isolation/purification. The islets were isolated from caprine pancreas by using an optimized collagenase XI-S concentration, and the cells were subsequently purified using Euro-Ficoll density gradient. In vitro viability of islets was determined by fluorescein diacetate and propidium iodide staining. Static incubation was used to assess functionality and insulin production by islet cells in culture media when exposed to various levels of glucose. Pancreatic tissues were examined by using light microscopy, fluorescence microscopy, scanning, and transmission electron microscopy. In vivo viability and functionality of caprine islets were assessed by evaluating the transplanted islets in diabetic mice. Insulin assay of glucose-stimulated insulin secretion test showed that the insulin levels increased with increasing concentration of glucose. Thus, purified islets stimulated with high glucose concentration (25 mM) secreted higher levels of insulin (0.542 ± 0.346 μg/L) than the insulin levels (0.361 ± 0.219, 0.303 ± 0.234 μg/L) secreted by exposure to low glucose concentrations (1.67 mM). Furthermore, insulin levels of recipient mice were significantly higher (p 
    Matched MeSH terms: Diabetes Mellitus, Experimental/therapy
  16. Hassan Z, Yam MF, Ahmad M, Yusof AP
    Molecules, 2010;15(12):9008-23.
    PMID: 21150821 DOI: 10.3390/molecules15129008
    Gynura procumbens (Lour.) Merr (family Compositae) is cultivated in Southeast Asia, especially Indonesia, Malaysia and Thailand, for medicinal purposes. This study evaluated the in vivo hypoglycemic properties of the water extract of G. procumbens following 14 days of treatment and in vitro in RIN-5F cells. Glucose absorption from the intestines and its glucose uptake in abdominal skeletal muscle were assessed. The antidiabetic effect of water extract of G. procumbens leaves was investigated in streptozotocin-induced diabetic rats. The intraperitoneal glucose tolerance test (IPGTT) was performed in diabetic rats treated with G. procumbens water extract for 14 days. In the IPGTT, blood was collected for insulin and blood glucose measurement. After the IPGTT, the pancreases were collected for immunohistochemical study of β-cells of the islets of Langerhans. The possible antidiabetic mechanisms of G. procumbens were assessed through in vitro RIN-5F cell study, intestinal glucose absorption and glucose uptake by muscle. The results showed that G. procumbens significantly decreased blood glucose levels after 14 days of treatment and improved outcome of the IPGTT. However, G. procumbens did not show a significant effect on insulin level either in the in vivo test or the in vitro RIN-5F cell culture study. G. procumbens also showed minimal effects on β-cells of the islets of Langerhans in the pancreas. However, G. procumbens only significantly increased glucose uptake by muscle tissues. From the findings we can conclude that G. procumbens water extract exerted its hypoglycemic effect by promoting glucose uptake by muscles.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*; Diabetes Mellitus, Experimental/metabolism
  17. Hassan Z, Sattar MZ, Suhaimi FW, Yusoff NH, Abdulla MH, Yusof AP, et al.
    Acta Neurol Belg, 2013 Sep;113(3):319-25.
    PMID: 23242937 DOI: 10.1007/s13760-012-0165-3
    The hypothalamic paraventricular nucleus (PVN) is involved in the regulation of sympathetic outflow and particularly affects the heart. This study sets out to determine the role of GABA of the paraventricular nucleus (PVN) in cardiovascular regulation in streptozotocin-induced diabetic rats. Pharmacological stimulation of glutamatergic receptors with DL-Homocysteic acid (200 mM in 100 nL) in the PVN region showed a significant depression in both mean arterial pressure (MAP) and heart rate (HR) of diabetic rats (Diabetic vs. non-diabetic: MAP 15.0 ± 1.5 vs. 35.8 ± 2.8 mmHg; HR 3.0 ± 2.0 vs. 30.0 ± 6.0 bpm, P < 0.05). Microinjection of bicuculline methiodide (1 mM in 100 nL), a GABAA receptor antagonist, produced an increase in baseline MAP and HR in both non-diabetic and diabetic rats. In the diabetic rats, bicuculline injection into the PVN reduced the pressor and HR responses (Diabetic vs. non-diabetic: MAP 6.2 ± 0.8 vs. 25.1 ± 2.2 mmHg; HR 1.8 ± 1.1 vs. 25.4 ± 6.2 bpm, P < 0.05). A microinjection of muscimol (2 mM in 100 nL), which is a GABAA receptor agonist, in the PVN elicited decreases in MAP and HR in both groups. The diabetic group showed a significantly blunted reduction in HR, but not MAP (Diabetic vs. non-diabetic: MAP -15.7 ± 4.0 vs. -25.0 ± 3.8 mmHg; HR -5.2 ± 2.1 vs. -39.1 ± 7.9 bpm). The blunted vasopressor and tachycardic responses to bicuculline microinjection in the diabetic rats are likely to result from decreased GABAergic inputs, attenuated release of endogenous GABA or alterations in GABAA receptors within the PVN.
    Matched MeSH terms: Diabetes Mellitus, Experimental/pathology*
  18. Hidayat AFA, Chan CK, Mohamad J, Kadir HA
    J Ethnopharmacol, 2018 Nov 15;226:120-131.
    PMID: 30118836 DOI: 10.1016/j.jep.2018.08.020
    ETHNOPHARMACOLOGICAL IMPORTANCE: Leptospermum flavescens has been used traditionally in Malaysia to treat various ailments such as constipation, hypertension, diabetes and cancer.

    AIM OF STUDY: To investigate the potential protective effects of L. flavescens in pancreatic β cells through inhibition of apoptosis and autophagy cell death mechanisms in in vitro and in vivo models.

    MATERIALS AND METHODS: L. flavescens leaves were extracted using solvent in increasing polarities: hexane, ethyl acetate, methanol and water. All extracts were tested for INS-1 β cells viability stimulated by streptozotocin (STZ). The extract which promotes the highest cell protective activity was further evaluated for insulin secretion, apoptosis and autophagy signaling pathways. Then, the acute toxicity of extract was carried out in SD rats according to OECD 423 guideline. The active extract was tested in diabetic rats where the pancreatic β islets were evaluated for insulin, apoptosis and autophagy protein.

    RESULTS: The methanolic extract of L. flavescens (MELF) was found to increase INS-1 β cells viability and insulin secretion against STZ. In addition, MELF has been shown to inhibit INS-1 β cells apoptosis and autophagy activity. Notably, there was no toxicity observed in SD rats when administered with MELF. Furthermore, MELF exhibited anti-hyperglycemic activity in diabetic rats where apoptosis and autophagy protein expression was found to be suppressed in pancreatic β islets.

    CONCLUSION: MELF was found to protect pancreatic β cells function from STZ-induced apoptosis and autophagy in in vitro and in vivo.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  19. Hong YH, Betik AC, Premilovac D, Dwyer RM, Keske MA, Rattigan S, et al.
    Am J Physiol Regul Integr Comp Physiol, 2015 May 15;308(10):R862-71.
    PMID: 25786487 DOI: 10.1152/ajpregu.00412.2014
    Nitric oxide (NO) has been shown to be involved in skeletal muscle glucose uptake during contraction/exercise, especially in individuals with Type 2 diabetes (T2D). To examine the potential mechanisms, we examined the effect of local NO synthase (NOS) inhibition on muscle glucose uptake and muscle capillary blood flow during contraction in healthy and T2D rats. T2D was induced in Sprague-Dawley rats using a combined high-fat diet (23% fat wt/wt for 4 wk) and low-dose streptozotocin injections (35 mg/kg). Anesthetized animals had one hindlimb stimulated to contract in situ for 30 min (2 Hz, 0.1 ms, 35 V) with the contralateral hindlimb rested. After 10 min, the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME; 5 μM) or saline was continuously infused into the femoral artery of the contracting hindlimb until the end of contraction. Surprisingly, there was no increase in skeletal muscle NOS activity during contraction in either group. Local NOS inhibition had no effect on systemic blood pressure or muscle contraction force, but it did cause a significant attenuation of the increase in femoral artery blood flow in control and T2D rats. However, NOS inhibition did not attenuate the increase in muscle capillary recruitment during contraction in these rats. Muscle glucose uptake during contraction was significantly higher in T2D rats compared with controls but, unlike our previous findings in hooded Wistar rats, NOS inhibition had no effect on glucose uptake during contraction. In conclusion, NOS inhibition did not affect muscle glucose uptake during contraction in control or T2D Sprague-Dawley rats, and this may have been because there was no increase in NOS activity during contraction.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*; Diabetes Mellitus, Experimental/physiopathology
  20. Husen R, Pihie AH, Nallappan M
    J Ethnopharmacol, 2004 Dec;95(2-3):205-8.
    PMID: 15507337 DOI: 10.1016/j.jep.2004.07.004
    Screening of aqueous extract of Phyllantus niruri (PL), Zingiber zerumbet (ZG), Eurycoma longifolia (TA-a and TA-b) and Andrographis paniculata (AP) to determine their blood glucose lowering effect were conducted in normoglycaemic and Streptozotocin-induced hyperglycaemic rats. Significant reduction in blood glucose level at 52.90% was shown when hyperglycaemic rats were treated with 50 mg/kg body weight (BW) aqueous extract of AP. This effect is enhanced when freeze-dried material was used, where 6.25 mg/kg BW gave 61.81% reduction in blood glucose level. In the administration of TA-a and TA-b, positive results in hyperglyacaemic rats were only obtained when 150 mg/kg BW of the aqueous extract was used. No significant reduction in blood glucose level were shown in hyperglycaemic rats treated with PL and ZG at all concentrations used (50, 100 and 150 mg/kg BW). In normoglycaemic rats, no significant reduction was noted when all the same extracts were used.
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood; Diabetes Mellitus, Experimental/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links