Displaying publications 81 - 100 of 319 in total

Abstract:
Sort:
  1. Ngeow YF, Wong YL, Lokanathan N, Wong GJ, Ong CS, Ng KP, et al.
    J Bacteriol, 2012 Sep;194(17):4786.
    PMID: 22887681 DOI: 10.1128/JB.01104-12
    We report the draft genome sequence of a clinical isolate, strain M115, identified as Mycobacterium massiliense, a member of the newly created taxon of Mycobacterium abscessus subspecies bolletii comb. nov.
    Matched MeSH terms: DNA, Bacterial/genetics
  2. Gan HM, Chew TH, Tay YL, Lye SF, Yahya A
    J Bacteriol, 2012 Sep;194(17):4759-60.
    PMID: 22887664 DOI: 10.1128/JB.00990-12
    Hydrogenophaga sp. strain PBC is an effective degrader of 4-aminobenzenesulfonate isolated from textile wastewater. Here we present the assembly and annotation of its genome, which may provide further insights into its metabolic potential. This is the first announcement of the draft genome sequence of a strain from the genus Hydrogenophaga.
    Matched MeSH terms: DNA, Bacterial/genetics
  3. Teh BS, Abdul Rahman AY, Saito JA, Hou S, Alam M
    J Bacteriol, 2012 Mar;194(5):1240.
    PMID: 22328745 DOI: 10.1128/JB.06589-11
    Thermus sp. strain CCB_US3_UF1, a thermophilic bacterium, has been isolated from a hot spring in Malaysia. Here, we present the complete genome sequence of Thermus sp. CCB_US3_UF1.
    Matched MeSH terms: DNA, Bacterial/genetics*
  4. Tan CG, Ideris A, Omar AR, Yii CP, Kleven SH
    Onderstepoort J Vet Res, 2014 09 02;81(1):e1-e7.
    PMID: 25686255 DOI: 10.4102/ojvr.v81i1.708
    The present study was based on the reverse transcription polymerase chain reaction (RT-PCR) of the 16S ribosomal nucleic acid (rRNA) of Mycoplasma for detection of viable Mycoplasma gallisepticum. To determine the stability of M. gallisepticum 16S rRNA in vitro, three inactivation methods were used and the suspensions were stored at different temperatures. The 16S rRNA of M. gallisepticum was detected up to approximately 20-25 h at 37 °C, 22-25 h at 16 °C, and 23-27 h at 4 °C. The test, therefore, could detect viable or recently dead M. gallisepticum (< 20 h). The RT-PCR method was applied during an in vivo study of drug efficacy under experimental conditions, where commercial broiler-breeder eggs were inoculated with M. gallisepticum into the yolk. Hatched chicks that had been inoculated in ovo were treated with Macrolide 1. The method was then applied in a flock of day 0 chicks with naturally acquired vertical transmission of M. gallisepticum, treated with Macrolide 2. Swabs of the respiratory tract were obtained for PCR and RT-PCR evaluations to determine the viability of M. gallisepticum. This study proved that the combination of both PCR and RT-PCR enables detection and differentiation of viable from non-viable M. gallisepticum.
    Matched MeSH terms: DNA, Bacterial/genetics
  5. Mohamed Zahidi J, Bee Yong T, Hashim R, Mohd Noor A, Hamzah SH, Ahmad N
    Diagn Microbiol Infect Dis, 2015 Apr;81(4):227-33.
    PMID: 25641125 DOI: 10.1016/j.diagmicrobio.2014.12.012
    Molecular approaches have been investigated to overcome difficulties in identification and differentiation of Brucella spp. using conventional phenotypic methods. In this study, high-resolution melt (HRM) analysis was used for rapid identification and differentiation of members of Brucella genus. A total of 41 Brucella spp. isolates from human brucellosis were subjected to HRM analysis using 4 sets of primers, which identified 40 isolates as Brucella melitensis and 1 as Brucella canis. The technique utilized low DNA concentration and was highly reproducible. The assay is shown to be a useful diagnostic tool, which can rapidly differentiate Brucella up to species level.
    Matched MeSH terms: DNA, Bacterial/genetics
  6. Lee LH, Azman AS, Zainal N, Eng SK, Fang CM, Hong K, et al.
    Int J Syst Evol Microbiol, 2014 Apr;64(Pt 4):1194-201.
    PMID: 24408529 DOI: 10.1099/ijs.0.059014-0
    A novel bacterium, strain MUSC 273(T), was isolated from mangrove sediments of the Tanjung Lumpur river in the state of Pahang in peninsular Malaysia. The bacterium was yellow-pigmented, Gram-negative, rod-shaped and non-spore-forming. The taxonomy of strain MUSC 273(T) was studied by a polyphasic approach and the organism showed a range of phenotypic and chemotaxonomic properties consistent with those of the genus Novosphingobium. The 16S rRNA gene sequence of strain MUSC 273(T) showed the highest sequence similarity to those of Novosphingobium indicum H25(T) (96.8 %), N. naphthalenivorans TUT562(T) (96.4 %) and N. soli CC-TPE-1(T) (95.9 %) and lower sequence similarity to members of all other species of the genus Novosphingobium. Furthermore, in phylogenetic analyses based on the 16S rRNA gene sequence, strain MUSC 273(T) formed a distinct cluster with members of the genus Novosphingobium. DNA-DNA relatedness of strain MUSC 273(T) to the type strains of the most closely related species, N. indicum MCCC 1A01080(T) and N. naphthalenivorans DSM 18518(T), was 29.2 % (reciprocal 31.0 %) and 17 % (reciprocal 18 %), respectively. The major respiratory quinone was ubiquinone Q-10, the major polyamine was spermidine and the DNA G+C content was 63.3±0.1 mol%. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine and sphingoglycolipid. The major fatty acids were C18 : 1ω7c, C17 : 1ω6c, C16 : 0, C15 : 0 2-OH and C16 : 1ω7c. Comparison of BOX-PCR fingerprints indicated that strain MUSC 273(T) represented a unique DNA profile. The combined genotypic and phenotypic data showed that strain MUSC 273(T) represents a novel species of the genus Novosphingobium, for which the name Novosphingobium malaysiense sp. nov. is proposed. The type strain is MUSC 273(T) ( = DSM 27798(T) = MCCC 1A00645(T) = NBRC 109947(T)).
    Matched MeSH terms: DNA, Bacterial/genetics
  7. Tajabadi N, Mardan M, Saari N, Mustafa S, Bahreini R, Manap MY
    Braz J Microbiol, 2013;44(3):717-22.
    PMID: 24516438
    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically "Melaleuca in Terengganu".
    Matched MeSH terms: DNA, Bacterial/genetics
  8. Lee LH, Zainal N, Azman AS, Mutalib NA, Hong K, Chan KG
    Int J Syst Evol Microbiol, 2014 May;64(Pt 5):1461-1467.
    PMID: 24449791 DOI: 10.1099/ijs.0.058701-0
    A novel actinobacterial strain, designated MUSC 201T, was isolated from a mangrove soil collected from Kuantan, the capital city of Pahang State in Malaysia. The taxonomic status of this strain was determined using a polyphasic approach. Comparative 16S rRNA gene sequence analysis revealed that strain MUSC 201T represented a novel lineage within the class Actinobacteria. Strain MUSC 201T formed a distinct clade in the family Nocardioidaceae and was most closely related to the members of the genera Nocardioides (16S rRNA gene sequence similarity, 91.9-95.1%), Aeromicrobium (92.7-94.6%), Marmoricola (92.5-93.1%) and Kribbella (91.5-92.4%). The cells of this strain were irregular coccoid to short rod shaped. The peptidoglycan contained ll-diaminopimelic acid as diagnostic diamino acid and the peptidoglycan type was A3γ. The peptidoglycan cell wall contained ll-diaminopimelic acid, glycine, glutamic acid and alanine in a molar ratio of 1.5:0.9:1.0:1.5. The cell-wall sugars were galactose and rhamnose. The predominant menaquinone was MK-9(H4). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, glycolipid and four unknown phospholipids. The major cellular fatty acids were C18:1ω9c (30.8%), C16:0 (24.1%), and 10-methyl C18:0 (13.9%). The DNA G+C content was 72.0±0.1 mol%. On the basis of phylogenetic and phenotypic differences from members of the genera of the family Nocardioidaceae, a novel genus and species, Mumia flava gen. nov., sp. nov. are proposed. The type strain of Mumia flava is MUSC 201T (=DSM 27763T=MCCC 1A00646T=NBRC 109973T).
    Matched MeSH terms: DNA, Bacterial/genetics
  9. Choi JY, Ko G, Jheong W, Huys G, Seifert H, Dijkshoorn L, et al.
    Int J Syst Evol Microbiol, 2013 Dec;63(Pt 12):4402-4406.
    PMID: 23950148 DOI: 10.1099/ijs.0.047969-0
    Two Gram-stain-negative, non-fermentative bacterial strains, designated 11-0202(T) and 11-0607, were isolated from soil in South Korea, and four others, LUH 13522, LUH 8638, LUH 10268 and LUH 10288, were isolated from a beet field in Germany, soil in the Netherlands, and sediment of integrated fish farms in Malaysia and Thailand, respectively. Based on 16S rRNA, rpoB and gyrB gene sequences, they are considered to represent a novel species of the genus Acinetobacter. Their 16S rRNA gene sequences showed greatest pairwise similarity to Acinetobacter beijerinckii NIPH 838(T) (97.9-98.4 %). They shared highest rpoB and gyrB gene sequence similarity with Acinetobacter johnsonii DSM 6963(T) and Acinetobacter bouvetii 4B02(T) (85.4-87.6 and 78.1-82.7 %, respectively). Strain 11-0202(T) displayed low DNA-DNA reassociation values (<40 %) with the most closely related species of the genus Acinetobacter. The six strains utilized azelate, 2,3-butanediol, ethanol and dl-lactate as sole carbon sources. Cellular fatty acid analyses showed similarities to profiles of related species of the genus Acinetobacter: summed feature 3 (C16 : 1ω7c, C16 : 1ω6c; 24.3-27.2 %), C18 : 1ω9c (19.9-22.1 %), C16 : 0 (15.2-22.0 %) and C12 : 0 (9.2-14.2 %). On the basis of the current findings, it is concluded that the six strains represent a novel species, for which the name Acinetobacter kookii sp. nov. is proposed. The type strain is 11-0202(T) ( = KCTC 32033(T) = JCM 18512(T)).
    Matched MeSH terms: DNA, Bacterial/genetics
  10. Lim KT, Hanifah YA, Yusof MY, Goering RV, Thong KL
    Diagn Microbiol Infect Dis, 2012 Oct;74(2):106-12.
    PMID: 22770652 DOI: 10.1016/j.diagmicrobio.2012.05.033
    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main bacterial pathogens responsible for nosocomial infections leading to pneumonia, bloodstream, skin, and soft tissue infections. The objective of this study was to investigate the genomic changes of MRSA in a tertiary hospital between the years 2003, 2004, 2007, and 2008. One hundred fifty-four MRSA strains were characterized by multilocus sequence typing (MLST), spa, and mec-associated dru typing. Among the 154 strains, 29 different dru, 15 spa, and 8 MLST types were identified. Seven sequence types (STs) (ST239, ST22, ST5, ST6, ST80, ST573, and ST241) were identified among 2007-08 strains, although only 2 STs (ST239 and ST20) were observed among 2003 strains. Clones ST239-t037-dt13g, ST22-t032-(dt10a and dt10aw), and 28 other MRSA clones being introduced in 2007-2008 have replaced the ST239-t037 (dt13d, 14h, 13i, 13l, 13m, 15m, 15l, and 11al) clones present in 2003. The predominant MLST clone, ST239 (90.3%), was further distinguished into 7 different spa types and 26 different dru types, including 17 novel dru types. Maximum parsimony tree based on dru repeats revealed that 10 dru types (dt11am, dt13j, dt15n, dt13q, dt13n, dt13p, dt13f, dt13ao, dt12j, dt7v) shared the same MLST-spa types with dt13d, suggesting that these MRSA clones might have evolved from ST239-t037-dt13d. In conclusion, our data showed that the ST239-t037-dt13d clone and other MRSA clones in 2003 were replaced by ST239-t037-dt13g and other new emerging spa and dru types.
    Matched MeSH terms: DNA, Bacterial/genetics
  11. Jonet MA, Mahadi NM, Murad AM, Rabu A, Bakar FD, Rahim RA, et al.
    PMID: 22456489 DOI: 10.1159/000336524
    A heterologous signal peptide (SP) from Bacillus sp. G1 was optimized for secretion of recombinant cyclodextrin glucanotransferase (CGTase) to the periplasmic and, eventually, extracellular space of Escherichia coli. Eight mutant SPs were constructed using site-directed mutagenesis to improve the secretion of recombinant CGTase. M5 is a mutated SP in which replacement of an isoleucine residue in the h-region to glycine created a helix-breaking or G-turn motif with decreased hydrophobicity. The mutant SP resulted in 110 and 94% increases in periplasmic and extracellular recombinant CGTase, respectively, compared to the wild-type SP at a similar level of cell lysis. The formation of intracellular inclusion bodies was also reduced, as determined by sodium dodecyl sulfate-polyacrylamyde gel electrophoresis, when this mutated SP was used. The addition of as low as 0.08% glycine at the beginning of cell growth improved cell viability of the E. coli host. Secretory production of other proteins, such as mannosidase, also showed similar improvement, as demonstrated by CGTase production, suggesting that the combination of an optimized SP and a suitable chemical additive leads to significant improvements of extracellular recombinant protein production and cell viability. These findings will be valuable for the extracellular production of recombinant proteins in E. coli.
    Matched MeSH terms: DNA, Bacterial/genetics
  12. Norazah A, Law NL, Abd Ghani MK, Salbiah N
    Med J Malaysia, 2012 Jun;67(3):269-73.
    PMID: 23082415
    This study was conducted to detect the presence of heterogenous vancomycin-intermediate Staphylococcus aureus (heteroVISA) among MRSA isolates in a major hospital. Forty-three MRSA isolates with vancomycin MIC 2 microg/ml collected in 2009 was screened for heteroVISA using Etest Glycopeptide Resistance Detection (GRD) and confirmed by population analysis profile-area under curve method. The genetic relatedness of heteroVISA strains with other MRSA was examined by pulsed-field gel electrophoresis (PFGE) method. Two isolates were shown to be heteroVISA and derived from the same clone. This showed that heteroVISA strains were already present among our local strains since 2009 and were genetically related to other susceptible strains.
    Matched MeSH terms: DNA, Bacterial/genetics*
  13. Issa R, Mohd Hassan NA, Abdul H, Hashim SH, Seradja VH, Abdul Sani A
    Diagn Microbiol Infect Dis, 2012 Jan;72(1):62-7.
    PMID: 22078904 DOI: 10.1016/j.diagmicrobio.2011.09.021
    A real-time quantitative polymerase chain reaction (qPCR) was developed for detection and discrimination of Mycobacterium tuberculosis (H37Rv and H37Ra) and M. bovis bacillus Calmette-Guérin (BCG) of the Mycobacterium tuberculosis complex (MTBC) from mycobacterial other than tuberculosis (MOTT). It was based on the melting curve (Tm) analysis of the gyrB gene using SYBR(®) Green I detection dye and the LightCycler 1.5 system. The optimal conditions for the assay were 0.25 μmol/L of primers with 3.1 mmol/L of MgCl(2) and 45 cycles of amplification. For M. tuberculosis (H37Rv and H37Ra) and M. bovis BCG of the MTBC, we detected the crossing points (Cp) at cycles of 16.96 ± 0.07, 18.02 ± 0.14, and 18.62 ± 0.09, respectively, while the Tm values were 90.19 ± 0.06 °C, 90.27 ± 0.09 °C, and 89.81 ± 0.04 °C, respectively. The assay was sensitive and rapid with a detection limit of 10 pg of the DNA template within 35 min. In this study, the Tm analysis of the qPCR assay was applied for the detection and discrimination of MTBC from MOTT.
    Matched MeSH terms: DNA, Bacterial/genetics
  14. Li D, Midgley DJ, Ross JP, Oytam Y, Abell GC, Volk H, et al.
    Arch Microbiol, 2012 Jun;194(6):513-23.
    PMID: 22245906 DOI: 10.1007/s00203-012-0788-z
    Microbial diversity within formation water and oil from two compartments in Bokor oil reservoir from a Malaysian petroleum oil field was examined. A total of 1,056 16S rRNA gene clones were screened from each location by amplified ribosomal DNA restriction analysis. All samples were dominated by clones affiliated with Marinobacter, some novel Deferribacteraceae genera and various clones allied to the Methanococci. In addition, either Marinobacterium- or Pseudomonas-like operational taxonomic units were detected from either compartment. A systematic comparison with the existing pertinent studies was undertaken by analysing the microbial amplicons detected and the PCR primers used. The analyses demonstrated that bacterial communities were site specific, while Archaea co-occurred more frequently. Amplicons related to Marinobacter, Marinobacterium and Pseudomonas were detected in a number of the studies examined, suggesting they may be ubiquitous members in oil reservoirs. Further analysis of primers used in those studies suggested that most primer pairs had fairly broad but low matches across the bacterial and archaeal domains, while a minority had selective matches to certain taxa or low matches to all the microbial taxa tested. Thus, it indicated that primers may play an important role in determining which taxa would be detected.
    Matched MeSH terms: DNA, Bacterial/genetics
  15. Suppiah J, Thimma JS, Cheah SH, Vadivelu J
    FEMS Microbiol Lett, 2010 May;306(1):9-14.
    PMID: 20345378 DOI: 10.1111/j.1574-6968.2010.01923.x
    Molecular-based techniques are becoming desirable as tools for identification of infectious diseases. Amongst the Burkholderia spp., there is a need to differentiate Burkholderia pseudomallei from Burkholderia cepacia, as misidentification could lead to false treatment of patients. In this study, conventional PCR assay targeting three genes was developed. Primers were designed for the amplification of Burkholderia genus-specific groEL gene, B. pseudomallei-specific mprA gene and B. cepacia-specific zmpA gene. The specificity and sensitivity of the assay was tested with 15 negative control strains and 71 Burkholderia spp. isolates including positive controls B. pseudomallei K96243 and ATCC B. cepacia strain. All B. pseudomallei strains were positive for groEL (139 bp) and mprA (162 bp), indicating a sensitivity of 100%. All B. cepacia strains produced amplicons for detection of groEL and zmpA (147 bp). Specificity using negative strains was 100%. In this study, a PCR assay specific for the detection of Burkholderia spp. and differentiation of the genus B. pseudomallei and B. cepacia was developed. The conventional assay has to be performed separately for each species due to the similar size of the PCR products amplified. This format may therefore be recommended for use as a diagnostic tool in laboratories where real-time PCR machines are not available. However, the real-time PCR was able to detect and differentiate the genus and species in single duplex assay.
    Matched MeSH terms: DNA, Bacterial/genetics
  16. Shukor MY, Ahmad SA, Nadzir MM, Abdullah MP, Shamaan NA, Syed MA
    J Appl Microbiol, 2010 Jun;108(6):2050-8.
    PMID: 19968732 DOI: 10.1111/j.1365-2672.2009.04604.x
    To isolate and characterize a potent molybdenum-reducing bacterium.
    Matched MeSH terms: DNA, Bacterial/genetics
  17. Lim BK, Thong KL
    J Infect Dev Ctries, 2009 Jul 01;3(6):420-8.
    PMID: 19762954
    BACKGROUND: Differentiation of Salmonella enterica into its serogroups is important for epidemiological study. The objective of the study was to apply a multiplex PCR targeting serogroups A, B, C1, D, E and Vi-positive strains of Salmonella enterica commonly found in Malaysia. A separate H-typing multiplex PCR which identified flagellar antigen "a", "b" or "d" was also optimized to confirm clinical serotypes, S. Paratyphi A and S. Typhi.

    METHODOLOGY: Sixty-seven laboratory Salmonella enterica strains were tested. Six sets of primers targeting defined regions of the O antigen synthesis genes (rfb gene cluster) and Vi antigen gene (viaB) were selected and combined into a multiplex PCR for O-grouping. Four primers (H-for, Ha-rev, Hb-rev and Hd-rev) were used in the second step multiplex PCR for H-typing. The optimized mPCR assays were further evaluated with 58 blind-coded Salmonella strains.

    RESULTS: The multiplex PCR results obtained showed 100% concordance to the conventionally typed serogroups. Validation with 58 blind coded Salmonella strains yield 100% accuracy and specificity.

    CONCLUSION: Based on this study, PCR serogrouping proved to be a rapid, alternative method for further differentiation of Salmonella enterica.

    Matched MeSH terms: DNA, Bacterial/genetics
  18. Khoo CH, Cheah YK, Lee LH, Sim JH, Salleh NA, Sidik SM, et al.
    Antonie Van Leeuwenhoek, 2009 Nov;96(4):441-57.
    PMID: 19565351 DOI: 10.1007/s10482-009-9358-z
    The increased occurrence of Salmonella occurrence in local indigenous vegetables and poultry meat can be a potential health hazards. This study is aimed to detect the prevalence of twenty different virulence factors among Salmonella enterica strains isolated from poultry and local indigenous vegetables in Malaysia via an optimized, rapid and specific multiplex PCR assay. The assay encompasses a total of 19 Salmonella pathogenicity islands genes and a quorum sensing gene (sdiA) in three multiplex reaction sets. A total of 114 Salmonella enterica isolates belonging to 38 different serovars were tested. Each isolate in under this study was found to possess up to 70% of the virulence genes tested and exhibited variable pathogenicity gene patterns. Reproducibility of the multiplex PCR assay was found to be 100% and the detection limit of the optimized multiplex PCR was tested with lowest detectable concentration of DNA 0.8 pg microl(-1). This study demonstrated various Salmonella pathogenicity island virulence gene patterns even within the same serovar. This sets of multiplex PCR system provide a fast and reliable typing approach based on Salmonella pathogenicity islands, thus enabling an effective monitoring of emerging pathogenic Salmonella strains as an additional tool in Salmonella surveillance studies.
    Matched MeSH terms: DNA, Bacterial/genetics
  19. Neela V, Ghasemzadeh Moghaddam H, van Belkum A, Horst-Kreft D, Mariana NS, Ghaznavi Rad E
    Eur J Clin Microbiol Infect Dis, 2010 Jan;29(1):115-7.
    PMID: 19779745 DOI: 10.1007/s10096-009-0813-6
    Methicillin-resistant Staphylococcus aureus (MRSA) from Malaysia were shown to possess staphylococcal cassette chromosome mec (SCCmec)-III and IIIA. Spa sequencing and multi-locus sequence typing (MLST) documented t037 and ST 239 (CC8) for 83.3% of the isolates. This confirms observations in several other Far Eastern countries and corroborates the epidemicity of this clone.
    Matched MeSH terms: DNA, Bacterial/genetics
  20. Slack AT, Khairani-Bejo S, Symonds ML, Dohnt MF, Galloway RL, Steigerwalt AG, et al.
    Int J Syst Evol Microbiol, 2009 Apr;59(Pt 4):705-8.
    PMID: 19329592 DOI: 10.1099/ijs.0.002766-0
    A single Leptospira strain (designated Bejo-Iso9(T)) was isolated from a soil sample taken in Johor, Malaysia. The isolate showed motility and morphology typical of the genus Leptospira under dark-field microscopy. Cells were found to be 10-13 microm in length and 0.2 microm in diameter, with a wavelength of 0.5 microm and an amplitude of approximately 0.2 microm. Phenotypically, strain Bejo-Iso9(T) grew in Ellinghausen-McCullough-Johnson-Harris medium at 13, 30 and 37 degrees C, and also in the presence of 8-azaguanine. Serologically, strain Bejo-Iso9(T) produced titres towards several members of the Tarassovi serogroup, but was found to be serologically unique by cross-agglutinin absorption test and thus represented a novel serovar. The proposed name for this serovar is Malaysia. Phylogenetic analysis of 16S rRNA gene sequences placed this novel strain within the radiation of the genus Leptospira, with sequence similarities within the range 90.4-99.5% with respect to recognized Leptospira species. DNA-DNA hybridization against the three most closely related Leptospira species was used to confirm the results of the 16S rRNA gene sequence analysis. The G+C content of the genome of strain Bejo-Iso9(T) was 36.2 mol%. On the basis of phenotypic, serological and phylogenetic data, strain Bejo-Iso9(T) represents a novel species of the genus Leptospira, for which the name Leptospira kmetyi sp. nov. is proposed. The type strain is Bejo-Iso9(T) (=WHO LT1101(T)=KIT Bejo-Iso9(T)).
    Matched MeSH terms: DNA, Bacterial/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links