RESULTS: Doping of a minute fraction of iron(III) salt (0.5 mol%) in a volatile solvent (ethanol) was carried out via the sol-gel technique. Fe3O4 was further calcined at various temperatures (in the range of 500-700 °C) to evaluate the thermal stability of the Fe3O4 nanoporous oxidizer nanoparticles. The physicochemical properties of the samples were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and UV-Visible spectroscopy techniques. XRD results revealed that the nanoparticles framework of Fe3O4 was maintained well up to 650 °C by the Fe dopant. UV-Vis results suggested that absorption property of combination Fe3O4/CNTs nanopowder by PLAL was enhanced and the band gap is reduced into 2.0 eV.
CONCLUSIONS: Density functional theory (DFT) studies emphasize the introduction of Fe+ and Fe2+ ions by replacing other ions in the CNT lattice, therefore creating oxygen vacancies. These further promoted anti-microbial efficiency. A significantly high bacterial inactivation that indicates results was evaluated and that the mean estimations of restraint were determined from triple assessment in every appraisal at 400 ml which represent the best anti-bacterial action against gram-positive and gram-negative microbes.
RESULTS: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin.
CONCLUSIONS: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.