Displaying publications 81 - 100 of 725 in total

Abstract:
Sort:
  1. Vythilingam I, Nitiavathy K, Yi P, Bakotee B, Hugo B, Singh B, et al.
    PMID: 10928352
    Dried Anopheles farauti mosquitos caught in Solomon Islands in 1990 were examined for malaria sporozoites by ELISA and nested polymerase chain reaction (PCR). Only heads and thoraces were used. Plasmodium genus-specific nested PCR amplifications were carried out on all samples. Of the 402 pools of mosquitos that were processed, 30 were positive for malaria. Nest 1 products of positive samples were subjected to further PCR amplifications with species-specific primers for P. falciparum and P. vivax. Twenty pools were positive for P. vivax by PCR while only 7 were positive by ELISA. For P. falciparum 2 pools were positive by both ELISA and PCR, and one of these was a pool which was positive for P. vivax by PCR and ELISA. Thus the sensitivity of PCR for P. vivax was 100% while the specificity was 96.7%. For P. falciparum the sensitivity and specificity were 100%. The PCR technique is highly sensitive and can be used on dried mosquitos which makes it a valuable tool for determining sporozoite rates of mosquitos, even in remote areas.
    Matched MeSH terms: Plasmodium falciparum/growth & development; Plasmodium falciparum/isolation & purification*; Plasmodium vivax/growth & development; Plasmodium vivax/isolation & purification*
  2. Gordon DM, Davis DR, Lee M, Lambros C, Harrison BA, Samuel R, et al.
    Am J Trop Med Hyg, 1991 Jul;45(1):49-56.
    PMID: 1867348
    Two hundred and seventy-five Orang Asli volunteers living in nine villages in the Pos Legap Valley of Perak State, peninsular Malaysia, participated in a prospective study designed to characterize the epidemiological, parasitological, and entomological characteristics of Plasmodium falciparum, P. vivax, and P. malariae malaria transmission. Prevalence rates for the three plasmodial species at initiation of the study ranged from 56% in the 0-4-year-old age group to 0% in individuals over the age of 40. Entomological surveys were conducted, enabling us to determine mosquito salivary gland-positive rates and entomological inoculation rates of 1.2 infectious mosquito bites per person per month for P. falciparum, 2.4 for P. vivax, and 0.3 for P. malariae. Cumulative incidence rates over the 16 weeks of the study, following radical cure of all volunteers, were 22.5% for P. falciparum, 12.7% for P. vivax, and 1.5% for P. malariae. The median baseline antibody titer against the immunodominant repetitive B cell epitope of P. falciparum or P. vivax circumsporozoite protein was significantly higher for volunteers who did not become parasitemic. Volunteers were selected for further study if they had evidence of being challenged with P. falciparum sporozoites during the study, based on a two-fold or greater increase in antibody titer against the immunodominant repetitive B cell epitope of the circumsporozoite protein. Resistance to infection was seen in six of 10 individuals who had high (greater than 25 OD units) baseline ELISA titers, compared with only three of 24 individuals who had low baseline ELISA titers (chi 2 P less than 0.02). A similar analysis for P. vivax did not show a significant correlation.
    Matched MeSH terms: Plasmodium falciparum/immunology*; Plasmodium malariae/immunology*; Plasmodium vivax/immunology*
  3. Sandosham AA, Fredericks HJ, Ponnampalam JT, Seow CL, Ismail O, Othman AM, et al.
    J Trop Med Hyg, 1975 Mar;78(3):54-8.
    PMID: 1095776
    Chloroquine resistance is a well established entity in South East Asia, and presents a problem of increasing importance. Strains of P. falciparum resistant to chloroquine have also been found to be resistant to amodiaquine and a combination of pyrimethamine and sulphadoxine. Knowledge of the drug sensitivity of the strains of malaria parasite in a given locality is important so that the right choice of drugs can be made in treatment of the disease. The treatment of chloroquine resistant malaria in West Malaysia is a subject of another paper but suffice it to say that increased doses of chloroquine have still been found to be effective in treating many cases of falciparum malaria from areas of chloroquine resistance.
    Matched MeSH terms: Plasmodium falciparum/drug effects*; Plasmodium malariae/isolation & purification; Plasmodium vivax/isolation & purification
  4. Singh B, Simon Divis PC
    Emerg Infect Dis, 2009 Oct;15(10):1657-8.
    PMID: 19861067 DOI: 10.3201/eid1510.090364
    After orangutans in Indonesia were reported as infected with Plasmodium cynomolgi and P. vivax, we conducted phylogenetic analyses of small subunit ribosomal RNA gene sequences of Plasmodium spp. We found that these orangutans are not hosts of P. cynomolgi and P. vivax. Analysis of >or=1 genes is needed to identify Plasmodium spp. infecting orangutans.
    Matched MeSH terms: Plasmodium vivax/genetics; Plasmodium vivax/isolation & purification*; Plasmodium cynomolgi/genetics; Plasmodium cynomolgi/isolation & purification*
  5. Phang WK, Bukhari FDM, Zen LPY, Jaimin JJ, Dony JJF, Lau YL
    Parasitol Int, 2022 Apr;87:102519.
    PMID: 34800724 DOI: 10.1016/j.parint.2021.102519
    Information about Plasmodium malariae is scanty worldwide due to its "benign" nature and low infection rates. Consequently, studies on the genetic polymorphisms of P. malariae are lacking. Here, we report genetic polymorphisms of 28 P. malariae circumsporozoite protein (Pmcsp) isolates from Malaysia which were compared with those in other regions in Asia as well as those from Africa. Phylogenetic analysis revealed that most Malaysian P. malariae isolates clustered together but independently from other Asian isolates. Low nucleotide diversity was observed in Pmcsp non-repeat regions in contrast to high nucleotide diversity observed in non-repeat regions of Plasmodium knowlesi CSP gene, the current major cause of malaria in Malaysia. This study contributes to the characterisation of naturally occurring polymorphisms in the P. malariae CSP gene.
    Matched MeSH terms: Plasmodium malariae/classification; Plasmodium malariae/genetics*; Plasmodium malariae/chemistry; Plasmodium knowlesi/genetics
  6. Imai N, White MT, Ghani AC, Drakeley CJ
    PLoS Negl Trop Dis, 2014 Jul;8(7):e2978.
    PMID: 25058400 DOI: 10.1371/journal.pntd.0002978
    INTRODUCTION: Plasmodium knowlesi is now recognised as a leading cause of malaria in Malaysia. As humans come into increasing contact with the reservoir host (long-tailed macaques) as a consequence of deforestation, assessing the potential for a shift from zoonotic to sustained P. knowlesi transmission between humans is critical.

    METHODS: A multi-host, multi-site transmission model was developed, taking into account the three areas (forest, farm, and village) where transmission is thought to occur. Latin hypercube sampling of model parameters was used to identify parameter sets consistent with possible prevalence in macaques and humans inferred from observed data. We then explore the consequences of increasing human-macaque contact in the farm, the likely impact of rapid treatment, and the use of long-lasting insecticide-treated nets (LLINs) in preventing wider spread of this emerging infection.

    RESULTS: Identified model parameters were consistent with transmission being sustained by the macaques with spill over infections into the human population and with high overall basic reproduction numbers (up to 2267). The extent to which macaques forage in the farms had a non-linear relationship with human infection prevalence, the highest prevalence occurring when macaques forage in the farms but return frequently to the forest where they experience higher contact with vectors and hence sustain transmission. Only one of 1,046 parameter sets was consistent with sustained human-to-human transmission in the absence of macaques, although with a low human reproduction number (R(0H) = 1.04). Simulations showed LLINs and rapid treatment provide personal protection to humans with maximal estimated reductions in human prevalence of 42% and 95%, respectively.

    CONCLUSION: This model simulates conditions where P. knowlesi transmission may occur and the potential impact of control measures. Predictions suggest that conventional control measures are sufficient at reducing the risk of infection in humans, but they must be actively implemented if P. knowlesi is to be controlled.

    Matched MeSH terms: Plasmodium knowlesi*
  7. Alias H, Surin J, Mahmud R, Shafie A, Mohd Zin J, Mohamad Nor M, et al.
    Parasit Vectors, 2014;7:186.
    PMID: 24735583 DOI: 10.1186/1756-3305-7-186
    Malaria is still an endemic disease of public health importance in Malaysia. Populations at risk of contracting malaria includes indigenous people, traditional villagers, mobile ethnic groups and land scheme settlers, immigrants from malaria endemic countries as well as jungle workers and loggers. The predominant species are Plasmodium falciparum and P. vivax. An increasing number of P. knowlesi infections have also been encountered. The principal vectors in Peninsular Malaysia are Anopheles maculatus and An. cracens. This study aims to determine the changes in spatial distribution of malaria in Peninsular Malaysia from year 2000-2009.
    Matched MeSH terms: Plasmodium/classification
  8. Rawa MS, Fong MY, Lau YL
    Malar J, 2016;15:62.
    PMID: 26847346 DOI: 10.1186/s12936-016-1127-7
    The Plasmodium rhoptry-associated protein 1 (RAP-1) plays a role in the formation of the parasitophorous vacuole following the parasite's invasion of red blood cells. Although there is some evidence that the protein is recognized by the host's immune system, study of Plasmodium falciparum RAP-1 (PfRAP-1) suggests that it is not under immune pressure. A previous study on five old (1953-1962) P. knowlesi strains suggested that RAP-1 has limited genetic polymorphism and might be under negative selection. In the present study, 30 recent P. knowlesi isolates were studied to obtain a better insight into the polymorphism and natural selection of PkRAP-1.
    Matched MeSH terms: Plasmodium; Plasmodium falciparum
  9. Vythilingam I, Keokenchan K, Phommakot S, Nambanya S, Inthakone S
    PMID: 11485101
    Malaria vector surveys were carried out in 8 provinces in Lao PDR in 1999. The surveys were conducted in 4 provinces - Savannakhet, Champasak, Luang Perbang and Sayaboury in May and in another 4 provinces - Bolikhamsay, Sarvan, Sekong and Vientiane in December 1999. Bare leg collection were carried out indoors and outdoors from 6 pm to 5 am. All anopheline mosquitos were identified, dissected and the gut, gland and ovaries were examined. A total of 438 Anopheles mosquitos belonging to 19 species were obtained. Of these only 3 species were found to be infected with oocysts - An. maculatus, An. dirus and An. minimus. All these species were found biting both indoors and outdoors. An. aconitus was the predominant species obtained in the December collection but its vectorial status remains unknown.
    Matched MeSH terms: Plasmodium/isolation & purification
  10. Ang HH, Chan KL, Mak JW
    Chemotherapy, 1997 Sep-Oct;43(5):311-5.
    PMID: 9309363 DOI: 10.1159/000239583
    Eleven Malaysian Plasmodium falciparum isolates were cultured in vitro and later subjected to antimalarial evaluations in 96-well microtiter plates. After cryopreservation, the IC50 (nM) for ST 195, ST 196, ST 197, ST 244 and ST 245 isolates were, respectively: 180.9, 198.7, 482.0, 580.0 and 690.1 for chloroquine; 3.4, 3.4, 9.2, 4.0 and 5.8 for mefloquine; 21.9, 10.5, 40.7, 40.1 and 48.7 for quinine; 136.7, 58.8, 116.4, 29.4 and 95.4 for cycloguanil, and 48.3, 57.5, 47.4, 61.5 and 37.8 for pyrimethamine. Before cryopreservation they were 172.5, 141.5, 453.2, 636.0 and 651.6 nM for chloroquine; 4.8, 2.6, 9.0, 6.9 and 5.8 nM for mefloquine; 21.3, 8.3, 41.9, 49.6 and 40.1 nM for quinine, 129.9, 47.3, 109.3, 30.6 and 95.4 nM for cycloguanil, and 45.4, 47.4, 40.2, 66.3 and 36.0 nM for pyrimethamine. IC50 (nM) for Gombak A, Gombak C, ST 9, ST 12, ST 85 and ST 148 isolates after 12 months of continuous in vitro culture were, respectively: 477.0, 492.3, 367.1, 809.4, 566.5 and 341.8 for chloroquine; 2.9, 11.1, 8.5, 16.9, 5.3 and 4.2 for mefloquine; 6.2, 58.3, 52.7, 36.7, 31.8 and 26.2 for quinine; 154.5, 57.2, 130.3, 94.2, 81.4 and 102.9 for cycloguanil, 26.9, 24.9, 43.8, 31.0, 14.1 and 56.7 for pyrimethamine. Before the 12-month culture they were 472.3, 452.9, 352.7, 773.7, 702.7 and 322.7 nM for chloroquine; 2.6, 13.2, 8.5, 17.2, 5.0 and 4.0 nM for mefloquine; 6.2, 85.4, 53.9, 38.5, 35.8 and 38.5 nM for quinine; 106.8, 74.3, 112.4, 89.8, 91.8 and 103.3 nM for cycloguanil, and 26.9, 31.4, 47.0, 28.1, 14.9 and 56.7 nM for pyrimethamine. Thus none of these isolates differed in their original susceptibilities after either of these procedures.
    Matched MeSH terms: Plasmodium falciparum/drug effects*
  11. Lim PK, Mak JW, Yong HS
    PMID: 1298082
    Two monoclonal antibodies (MAbs), one produced against Plasmodium falciparum (PF-IG8) and the other against P. cynomolgi (PC-IE12) schizont antigens were used in a sandwich ELISA for the detection of circulating plasmodial antigens in sera of patients infected with either P. falciparum, P. vivax or P. malariae. The mean +/- SD optical density (OD) values for the normal control group using PF-108 and PC-1E12 were 0.351 +/- 0.036 and 0.205 +/- 0.044, respectively. Mean OD values for the three infected groups were found to be significantly higher than those of the normal control group for both MAbs. However, ELISA values for individual serum specimens did not correlate with the level of parasitemia in the infected blood. Using a cut-off point of mean OD +/- 3 SD of the normal control group as indicating a positive reading, the specificity of this assay with both MAbs was 100%. The sensitivity of the assay using PF-1G8 was 95% while that obtained with PC-1E12 was 98%.
    Matched MeSH terms: Plasmodium falciparum/immunology*; Plasmodium malariae/immunology; Plasmodium vivax/immunology; Plasmodium cynomolgi/immunology*
  12. Bennett GF, Warren M, Cheong WH
    J Parasitol, 1966 Aug;52(4):647-52.
    PMID: 5969102
    Matched MeSH terms: Plasmodium/growth & development*
  13. Warren M, Coatney GR, Skinner JC
    J Parasitol, 1966 Feb;52(1):9-13.
    PMID: 5910463
    Matched MeSH terms: Plasmodium*
  14. DUNN FL
    J Parasitol, 1964 Apr;50:214-6.
    PMID: 14170752
    Matched MeSH terms: Plasmodium*
  15. Chin AZ, Maluda MCM, Jelip J, Jeffree MSB, Culleton R, Ahmed K
    J Physiol Anthropol, 2020 Nov 23;39(1):36.
    PMID: 33228775 DOI: 10.1186/s40101-020-00247-5
    BACKGROUND: Malaria is a major public-health problem, with over 40% of the world's population (more than 3.3 billion people) at risk from the disease. Malaysia has committed to eliminate indigenous human malaria transmission by 2020. The objective of this descriptive study is to understand the epidemiology of malaria in Malaysia from 2000 through 2018 and to highlight the threat posed by zoonotic malaria to the National Malaria Elimination Strategic Plan.

    METHODS: Malaria is a notifiable infection in Malaysia. The data used in this study were extracted from the Disease Control Division, Ministry of Health Malaysia, contributed by the hospitals and health clinics throughout Malaysia. The population data used in this study was extracted from the Department of Statistics Malaysia. Data analyses were performed using Microsoft Excel. Data used for mapping are available at EPSG:4326 WGS84 CRS (Coordinate Reference System). Shapefile was obtained from igismap. Mapping and plotting of the map were performed using QGIS.

    RESULTS: Between 2000 and 2007, human malaria contributed 100% of reported malaria and 18-46 deaths per year in Malaysia. Between 2008 and 2017, indigenous malaria cases decreased from 6071 to 85 (98.6% reduction), while during the same period, zoonotic Plasmodium knowlesi cases increased from 376 to 3614 cases (an 861% increase). The year 2018 marked the first year that Malaysia did not report any indigenous cases of malaria caused by human malaria parasites. However, there was an increasing trend of P. knowlesi cases, with a total of 4131 cases reported in that year. Although the increased incidence of P. knowlesi cases can be attributed to various factors including improved diagnostic capacity, reduction in human malaria cases, and increase in awareness of P. knowlesi, more than 50% of P. knowlesi cases were associated with agriculture and plantation activities, with a large remainder proportion linked to forest-related activities.

    CONCLUSIONS: Malaysia has entered the elimination phase of malaria control. Zoonotic malaria, however, is increasing exponentially and becoming a significant public health problem. Improved inter-sectoral collaboration is required in order to develop a more integrated effort to control zoonotic malaria. Local political commitment and the provision of technical support from the World Health Organization will help to create focused and concerted efforts towards ensuring the success of the National Malaria Elimination Strategic Plan.

    Matched MeSH terms: Plasmodium knowlesi*
  16. Chong ETJ, Neoh JWF, Lau TY, Lim YA, Chai HC, Chua KH, et al.
    Malar J, 2020 Oct 22;19(1):377.
    PMID: 33092594 DOI: 10.1186/s12936-020-03451-x
    BACKGROUND: Understanding the genetic diversity of candidate genes for malaria vaccines such as circumsporozoite protein (csp) may enhance the development of vaccines for treating Plasmodium knowlesi. Hence, the aim of this study is to investigate the genetic diversity of non-repeat regions of csp in P. knowlesi from Malaysian Borneo and Peninsular Malaysia.

    METHODS: A total of 46 csp genes were subjected to polymerase chain reaction amplification. The genes were obtained from P. knowlesi isolates collected from different divisions of Sabah, Malaysian Borneo, and Peninsular Malaysia. The targeted gene fragments were cloned into a commercial vector and sequenced, and a phylogenetic tree was constructed while incorporating 168 csp sequences retrieved from the GenBank database. The genetic diversity and natural evolution of the csp sequences were analysed using MEGA6 and DnaSP ver. 5.10.01. A genealogical network of the csp haplotypes was generated using NETWORK ver. 4.6.1.3.

    RESULTS: The phylogenetic analysis revealed indistinguishable clusters of P. knowlesi isolates across different geographic regions, including Malaysian Borneo and Peninsular Malaysia. Nucleotide analysis showed that the csp non-repeat regions of zoonotic P. knowlesi isolates obtained in this study underwent purifying selection with population expansion, which was supported by extensive haplotype sharing observed between humans and macaques. Novel variations were observed in the C-terminal non-repeat region of csp.

    CONCLUSIONS: The csp non-repeat regions are relatively conserved and there is no distinct cluster of P. knowlesi isolates from Malaysian Borneo and Peninsular Malaysia. Distinctive variation data obtained in the C-terminal non-repeat region of csp could be beneficial for the design and development of vaccines to treat P. knowlesi.

    Matched MeSH terms: Plasmodium knowlesi/genetics*
  17. Nuin NA, Tan AF, Lew YL, Piera KA, William T, Rajahram GS, et al.
    Malar J, 2020 Aug 27;19(1):306.
    PMID: 32854695 DOI: 10.1186/s12936-020-03379-2
    BACKGROUND: The monkey parasite Plasmodium knowlesi is an emerging public health issue in Southeast Asia. In Sabah, Malaysia, P. knowlesi is now the dominant cause of human malaria. Molecular detection methods for P. knowlesi are essential for accurate diagnosis and in monitoring progress towards malaria elimination of other Plasmodium species. However, recent commercially available PCR malaria kits have unpublished P. knowlesi gene targets or have not been evaluated against clinical samples.

    METHODS: Two real-time PCR methods currently used in Sabah for confirmatory malaria diagnosis and surveillance reporting were evaluated: the QuantiFast™ Multiplex PCR kit (Qiagen, Germany) targeting the P. knowlesi 18S SSU rRNA; and the abTES™ Malaria 5 qPCR II kit (AITbiotech, Singapore), with an undisclosed P. knowlesi gene target. Diagnostic accuracy was evaluated using 52 P. knowlesi, 25 Plasmodium vivax, 21 Plasmodium falciparum, and 10 Plasmodium malariae clinical isolates, and 26 malaria negative controls, and compared against a validated reference nested PCR assay. The limit of detection (LOD) for each PCR method and Plasmodium species was also evaluated.

    RESULTS: The sensitivity of the QuantiFast™ and abTES™ assays for detecting P. knowlesi was comparable at 98.1% (95% CI 89.7-100) and 100% (95% CI 93.2-100), respectively. Specificity of the QuantiFast™ and abTES™ for P. knowlesi was high at 98.8% (95% CI 93.4-100) for both assays. The QuantiFast™ assay demonstrated falsely-positive mixed Plasmodium species at low parasitaemias in both the primary and LOD analysis. Diagnostic accuracy of both PCR kits for detecting P. vivax, P. falciparum, and P. malariae was comparable to P. knowlesi. The abTES™ assay demonstrated a lower LOD for P. knowlesi of ≤ 0.125 parasites/µL compared to QuantiFast™ with a LOD of 20 parasites/µL. Hospital microscopy demonstrated a sensitivity of 78.8% (95% CI 65.3-88.9) and specificity of 80.4% (95% CI 67.6-89.8) compared to reference PCR for detecting P. knowlesi.

    CONCLUSION: The QuantiFast™ and abTES™ commercial PCR kits performed well for the accurate detection of P. knowlesi infections. Although the QuantiFast™ kit is cheaper, the abTES™ kit demonstrated a lower LOD, supporting its use as a second-line referral-laboratory diagnostic tool in Sabah, Malaysia.

    Matched MeSH terms: Plasmodium falciparum/isolation & purification; Plasmodium malariae/isolation & purification; Plasmodium vivax/isolation & purification; Plasmodium knowlesi/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links