The Japanese encephalitis (JE) serocomplex of flaviviruses comprises 10 members, 9 of which: Alfuy (ALF); Koutango (KOU); Kokobera (KOK); Kunjin (KUN); Murray Valley encephalitis (MVE); JE; Stratford (STR); Usutu (USU); and West Nile (WN) have been isolated from Africa, southern Europe, Middle East, Asia, and Australia. The tenth member, St. Louis encephalitis (SLE) virus, is confined to North, Central, and South America. For ALF, KOK, KOU, STR, and USU, no sequence data have as yet been reported, and little molecular phylogeny has been determined for this complex as a whole. Using a rapid, one-step RT-PCR and universal primers, we have amplified and sequenced a 450-600 base pair region of the virus genome encompassing the N terminus of the nonstructural protein NS5 and the 5' end of the 3' noncoding region, for several strains of all of these viruses, except USU and SLE viruses. These data, as well as published sequence data for other flaviviruses, were analyzed with the ClustalW and Phylip computer packages. The resultant phylogenetic data were consistent with some of the current flavivirus serological classification, showing a close relationship between ALF and MVE viruses and between KOK and STR viruses, but suggested that KOK and STR are distantly related to the other viruses and should perhaps be reclassified in their own serocomplex. The data also confirmed the close relationship between KUN and WN viruses and showed that an isolate of KUN virus from Sarawak may represent a "link" between these two virus species. In addition, the primary sequence data revealed a polymorphic region just downstream of the stop codon in the 3' end of the viral genomes.
Over 200 strains of respiratory viruses cause a variety of human infections ranging from common cold to life-threatening pneumonia. Respiratory viruses implicated in this study are respiratory syncytial viruses (RSV), adenovirus, influenza viruses and parainfluenza viruses. The objective of this study is to determine the epidemiology of respiratory viruses in paediatric patients with lower respiratory tract infection. The methods used were direct antigen detection method, shell vial culture method and conventional tube culture method. The samples included in this study are paediatric patients seen in Universiti Kebangsaan Malaysia Hospital, Kuala Lumpur with suspected acute viral respiratory infection, presenting with acute laryngotracheobronchitis (croup), bronchiolitis and pneumonia. Nasopharyngeal aspirates were collected and processed almost immediately. A total of 222 specimens were received during February 1999 to January 2000 showing a dual peak pattern in the months of April and December. The mean age of the patients was 13 months. Pneumonia (77.9%) was the most common clinical diagnosis in children with lower respiratory tract infection. This was followed by bronchiolitis (19.4%) and croup (27%). Viral aetiologies were confirmed in 23.4% of the patients. The most common respiratory virus isolated or detected was RSV, followed by parainfluenza viruses, influenza viruses and adenovirus.
Flaviviruses (FVs) are arthropod-borne viruses of medical and veterinary importance. Numerous species of FVs have been isolated from various host; mainly humans, animals, ticks, and mosquitoes. Certain FVs are extremely host-specific; at the same time, some FVs can infect an extensive range of species. Based on published literatures, 11 species of FVs have been detected from diverse host species in Malaysia. In humans, dengue virus and Japanese encephalitis virus have been reported since 1901 and 1942. In animals, the Batu Cave virus, Sitiawan virus, Carey Island, Tembusu virus, Duck Tembusu virus, and Japanese encephalitis viruses were isolated from various species. In mosquitoes, Japanese encephalitis virus and Kunjin virus were isolated from Culex spp., while Zika virus and Jugra virus were isolated from Aedes spp. In ticks, the Langat virus was isolated from Ixodes spp. One of the major challenges in the diagnosis of FVs is the presence of sero-complexes as a result of cross-reactivity with one or more FV species. Subsequently, the distribution of specific FVs among humans and animals in a specific population is problematic to assess and often require comprehensive and thorough analyses. Molecular assays such as quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and digital droplet RT-PCR (ddRT-PCR) have been used for the differentiation of flavivirus infections to increase the accuracy of epidemiological data for disease surveillance, monitoring, and control. In situations where sero-complexes are common in FVs, even sensitive assays such as qRT-pCR can produce false positive results. In this write up, an overview of the various FV sero-complexes reported in Malaysia to date and the challenges faced in diagnosis of FV infections are presented.
Matched MeSH terms: Encephalitis Viruses, Tick-Borne; Encephalitis Viruses, Japanese
Fifty black tiger shrimp Penaeus monodon from commercial cultivation ponds in Malaysia were examined by Tdt-mediated dUTP nick-end labeling (TUNEL) fluorescence assay and agarose gel electrophoresis of DNA extracts for evidence of DNA fragmentation as an indicator of apoptosis. From these specimens, 30 were grossly normal and 20 showed gross signs of white spot syndrome virus (WSSV) infection. Of the 30 grossly normal shrimp, 5 specimens were found to be positive for WSSV infection by normal histology and by nested polymerase chain reaction (PCR) analysis. All of the specimens showing gross signs of WSSV infection were positive for WSSV by normal histology, while 5 were positive by nested PCR only (indicating light infections) and 15 were positive by 1-step PCR (indicating heavy infections). Typical histological signs of WSSV infection included nuclear hypertrophy, chromatin condensation and margination. None of the 25 grossly normal shrimp negative for WSSV by 1-step PCR showed any signs of DNA fragmentation by TUNEL assay or agarose gel electrophoresis of DNA extracts. The 10 specimens that gave PCR-positive results for WSSV by nested PCR only (i.e., 5 grossly normal shrimp and 5 grossly positive for WSSV) gave mean counts of 16 +/- 8% TUNEL-positive cells, while the 25 specimens PCR positive by 1-step PCR gave mean counts of 40 +/- 7% TUNEL-positive cells. Thus, the number of TUNEL positive cells present in tissues increased with increasing severity of infection, as determined by gross signs of white spots on the cuticle, the number of intranuclear inclusions in histological sections, and results from single and nested PCR assays. DNA extracts of PCR-positive specimens tested by agarose gel electrophoresis showed indications of DNA fragmentation either as smears or as 200 bp ladders. Given that DNA fragmentation is generally considered to be a hallmark of apoptosis, the results suggested that apoptosis might be implicated in shrimp death caused by WSSV.
Tetherin, an interferon-inducible gene was first discovered to be an antiviral factor in 2008. A vast range of viruses, such as influenza A virus (IAV), dengue virus, Ebola virus, HIV, and RSV, have been reported to be susceptible to the antiviral activity of tetherin. Multiple reports have been published encompassing the role of tetherin in the IAV life cycle. To date, nine reports have been published regarding the role of tetherin in the IAV life cycle, with four reports supporting tetherin as an antiviral factor while five other reports suggesting no effect. To this end, this review summarizes the list of viruses currently known to be inhibited by tetherin and describes mechanisms used by viruses to overcome the antiviral potential of tetherin. Further, using IAV as disease model, we provide existing evidence in favor and against tetherin being considered as an antiviral candidate. Subsequent analysis of the experimental procedures across IAV-tetherin published reports revealed that the experimental setup (ie, cell lines, transfection reagents, and multiplicity of infection), strain-specific activity of NS1, and differing roles of NS1 in different cell lines may add up to the contributing factors leading to the discrepancies observed.
Cancer is a leading cause of global mortality. Whilst anticancer awareness programs have increased significantly over the years, scientific research into the development of efficient and specific drugs to target cancerous cells for enhanced therapeutic effects has not received much clinical success. Chemotherapeutic agents are incapable of acting specifically on cancerous cells, thus causing low therapeutic effects accompanied by toxicity to surrounding normal tissues. The search for smart, highly specific and efficient cancer treatments and delivery systems continues to be a significant research endeavor. Targeted cancer therapy is an evolving treatment approach with great promise in enhancing the efficacy of cancer therapies via the delivery of therapeutic agents specifically to and into desired tumor cells using viral or non-viral targeting elements. Viral oncotherapy is an advanced cancer therapy based on the use of oncolytic viruses (OV) as elements to specifically target, replicate and kill malignant cancer cells selectively without affecting surrounding healthy cells. Aptamers, on the other hand, are non-viral targeting elements that are single-stranded nucleic acids with high specificity, selectivity and binding affinity towards their cognate targets. Aptamers have emerged as a new class of bioaffinity targeting elements can be generated and molecularly engineered to selectively bind to diverse targets including proteins, cells and tissues. This article discusses, comparatively, the potentials and impacts of both viral and aptamer-mediated targeted cancer therapies in advancing conventional drug delivery systems through enhanced target specificity, therapeutic payload, bioavailability of the therapeutic agents at the target sites whilst minimizing systemic cytotoxicity. This article emphasizes on effective site-directed targeting mechanisms and efficacy issues that impact on clinical applications.
The discovery of tumour selective virus-mediated apoptosis marked the birth of an alternative cancer treatment in the form of oncolytic viruses. Even though, its oncolytic efficiency was demonstrated more than 50 years ago, safety concerns which resulted from mild to lethal side effects hampered the progress of oncolytic virus research. Since the classical oncolytic virus studies rely heavily on its natural oncolytic ability, virus manipulation was limited, thereby, restricted efforts to improve its safety. In order to circumvent such restriction, experiments involving non-human viruses such as the avian Newcastle disease virus (NDV) was conducted using cultured cells, animal models and human subjects. The corresponding reports on its significant tumour cytotoxicity along with impressive safety profile initiated immense research interest in the field of oncolytic NDV. The varying degree of oncolytic efficiency and virulency among NDV strains encouraged researchers from all around the world to experiment with their respective local NDV isolates in order to develop an oncolytic virus with desirable characteristics. Such desirable features include high tumour-killing ability, selectivity and low systemic cytotoxicity. The Malaysian field outbreak isolate, NDV strain AF2240, also currently, receives significant research attention. Apart from its high cytotoxicity against tumour cells, this strain also provided fundamental insight into NDV-mediated apoptosis mechanism which involves Bax protein recruitment as well as death receptor engagement. Studies on its ability to selectively induce apoptosis in tumour cells also resulted in a proposed p38 MAPK/NF-κB/IκBα pathway. The immunogenicity of AF2240 was also investigated through PBMC stimulation and macrophage infection. In addition, the enhanced oncolytic ability of this strain under hypoxic condition signifies its dynamic tumour tropism. This review is aimed to introduce and discuss the aforementioned details of the oncolytic AF2240 strain along with its current challenges which outlines the future research direction of this virus.
Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
Enteromorpha prolifera blooms considerably affected coastal environments in recent years. However, the effects of E. prolifera on microbial ecology and function remained unknown. In this study, metagenomic sequencing was used to investigate the effect of E. prolifera bloom on the microbial communities and functional genes in an aquaculture environment. Results showed that E. prolifera bloom could significantly alter the microbial composition and abundance, and heterotrophic bacteria comprised the major groups in the E. prolifera bloom pond, which was dominated by Actinomycetales and Flavobacteriales. The study indicated that viruses played an important role in shaping the microbial community and diversity during E. prolifera bloom. These viruses affected various dominant microbial taxa (such as Rhodobacteraceae, Synechococcus, and Prochlorococcus), which produced an obvious impact on potential nutrient transformation. Functional annotation analysis indicated that E. prolifera bloom would considerably shift the metabolism function by altering the structure and abundance of the microbial community. E. prolifera bloom pond had the low ability of potential metabolic capabilities of nitrogen, sulfur, and phosphate, whereas promoted gene abundance of genetic information processing. These changes in the microbial community and function could produce serious effect on aquaculture ecosystem.
Mosquito-borne diseases are a major threat to public health. The shortcomings of diagnostic tools, especially those that are antibody-based, have been blamed in part for the rising annual morbidity and mortality caused by these diseases. Antibodies harbor a number of disadvantages that can be clearly addressed by aptamers as the more promising molecular recognition elements. Aptamers are defined as single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit high binding affinity and specificity against a wide variety of target molecules based on their unique structural conformations. A number of aptamers were developed against mosquito-borne pathogens such as Dengue virus, Zika virus, Chikungunya virus, Plasmodium parasite, Francisella tularensis, Japanese encephalitis virus, Venezuelan equine encephalitis virus, Rift Valley fever virus and Yellow fever virus. Intrigued by these achievements, we carry out a comprehensive overview of the aptamers developed against these mosquito-borne infectious agents. Characteristics of the aptamers and their roles in diagnostic, therapeutic as well as other applications are emphasized.
Production of proteins in plants for human health applications has become an attractive strategy attributed by their potentials for low-cost production, increased safety due to the lack of human or animal pathogens, scalability and ability to produce complex proteins. A major milestone for plant-based protein production for use in human health was achieved when Protalix BioTherapeutics produced taliglucerase alfa (Elelyso®) in suspension cultures of a transgenic carrot cell line for the treatment of patients with Gaucher's disease, was approved by the USA Food and Drug Administration in 2012. In this review, we are highlighting various approaches for plant-based production of proteins and recent progress in the development of plant-made therapeutics and biologics for the prevention and treatment of human diseases.
Encephalitis causes significant global morbidity and mortality. A large number of viruses cause encephalitis, and their geographic and temporal distributions vary. In many encephalitis cases, the virus cannot be detected, even after extensive testing. This is one challenge in management of the encephalitis patient. Since cytokines are pivotal in any form of inflammation and vary according to the nature of the inflammation, we hypothesized cytokine levels would allow us to discriminate between encephalitis caused by viruses and other aetiologies. This pilot study was conducted in a tertiary care hospital in Dhaka, Bangladesh. Viral detection was performed by polymerase chain reaction using patient cerebrospinal fluid. Acute phase reactants and cytokines were detected in patient serum. Of the 29 biomarkers assessed using the Wilcoxon rank-sum test, only vascular endothelial growth factor (VEGF) was significantly higher (P = 0.0015) in viral-positive compared with virus-negative encephalitis patients. The area under the curve (AUC) for VEGF was 0.82 (95% confidence interval: 0.66-0.98). Serum VEGF may discriminate between virus-positive and virus-negative encephalitis. Further study will be needed to confirm these findings.
The exciting discovery of the semiconducting-like properties of deoxyribonucleic acid (DNA) and its potential applications in molecular genetics and diagnostics in recent times has resulted in a paradigm shift in biophysics research. Recent studies in our laboratory provide a platform towards detecting charge transfer mechanism and understanding the electronic properties of DNA based on the sequence-specific electronic response, which can be applied as an alternative to identify or detect DNA. In this study, we demonstrate a novel method for identification of DNA from different shrimp viruses and bacteria using electronic properties of DNA obtained from both negative and positive bias regions in current-voltage (I-V) profiles. Characteristic electronic properties were calculated and used for quantification and further understanding in the identification process. Aquaculture in shrimp industry is a fast-growing food sector throughout the world. However, shrimp culture in many Asian countries faced a huge economic loss due to disease outbreaks. Scientists have been using specific established methods for detecting shrimp infection, but those methods do have their significant drawbacks due to many inherent factors. As such, we believe that this simple, rapid, sensitive and cost-effective tool can be used for detection and identification of DNA from different shrimp viruses and bacteria.
Acute pharyngitis (AP) is a common reason for private primary care consultations, thus providing an avenue for widespread antibiotic intake among the community. However, there is limited data on the antibiotic prescription appropriateness and resistance information in the Malaysian private primary care setting, therefore, this study aimed to investigate the prevalence of isolated viruses and bacteria, antibiotic resistance patterns, antibiotic prescription patterns and appropriateness by general practitioners (GPs) and factors affecting antibiotic resistance and antibiotic prescription patterns. To investigate, a cross-sectional study was conducted among 205 patients presenting with AP symptoms at private primary care clinics in central Malaysia from 3rd January 2016 to 30th November 2016. Throat swabs were collected from 205 AP patients for two purposes: (i) the detection of four common respiratory viruses associated with AP via reverse-transcription real-time PCR (qRT-PCR); and (ii) bacterial identification using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Bacterial isolates were then subjected to antibiotic susceptibility screening and McIsaac scoring was calculated post-prescription based on GP selection of criteria. Generalized estimating equations analysis with multiple logistic regression was conducted to identify factors associated with presence of virus and antibiotic prescription. The results showed that 95.1% (195/205) of patients had at least one of the four viruses, with rhinovirus (88.5%) being the most prevalent, followed by adenovirus (74.9%), influenza A virus (4.6%) and enterovirus (2.1%). A total of 862 non-repetitive colonies were isolated from the culture of throat swabs from 205 patients who were positive for bacteria. From a total of 22 genera, Streptococcus constitutes the most prevalent bacteria genus (40.9%), followed by Neisseria (20%), Rothia (13.0%), Staphylococcus (11%) and Klebsiella (4.9%). Only 5 patients carried group A beta-hemolytic streptococci (GABHS). We also report the presence of vancomycin-resistant S. aureus or VRSA (n = 9, 10.1%) among which one isolate is a multidrug-resistant methicillin-resistant S. aureus (MDR-MRSA), while 54.1% (n = 111) were found to carry at least one antibiotic-resistant bacteria species. Application of the McIsaac scoring system indicated that 87.8% (n = 180) of patients should not be prescribed antibiotics as the majority of AP patients in this study had viral pharyngitis. The antibiotic prescription appropriateness by applying post-prescription McIsaac scoring was able to rule out GABHS pharyngitis in this sample with a GABHS culture-positive sensitivity of 40% (n = 2/5) and specificity of 90% (180/200). In conclusion, antibiotic-resistant throat isolates and over-prescription of antibiotics were observed and McIsaac scoring system is effective in guiding GPs to determine occurrences of viral pharyngitis to reduce unnecessary antibiotic prescription.
The 11th International Oncolytic Virus Conference (IOVC) was held from April 9-12, 2018 in Oxford, UK. This is part of the high-profile academic-led series of meetings that was started back in 2002 by Steve Russell and John Bell, with most of the previous meetings being held in North America (often in Banff). The conference brought together many of the major players in oncolytic virotherapy from all over the world, addressing all stages of research and development-from aspects of basic science and cellular immunology all the way through to early- and late-phase clinical trials. The meeting welcomed 352 delegates from 24 countries. The top seven delegate countries, namely, the UK, US, Canada, The Netherlands, Germany, Japan and South Korea, contributed 291 delegates while smaller numbers coming from Australia, Austria, Bulgaria, China, Finland, France, Iraq, Ireland, Israel, Italy, Latvia, Malaysia, Poland, Slovenia, Spain, Sweden and Switzerland. Academics comprised about half of the attendees, industry 30% and students 20%. The next IOVC is scheduled to be held on Vancouver Island in autumn 2019. Here we share brief summaries of the oral presentations from invited speakers and proffered papers in the different subtopics presented at IOVC 2018.
The mosquito-borne West Nile virus (WNV) is responsible for outbreaks of viral encephalitis in humans, horses, and birds, with particularly virulent strains causing recent outbreaks of disease in eastern Europe, the Middle East, North America, and Australia. Previous studies have phylogenetically separated WNV strains into two main genetic lineages (I and II) containing virulent strains associated with neurological disease. Several WNV-like strains clustering outside these lineages have been identified and form an additional five proposed lineages. However, little is known about whether these strains have the potential to induce disease. In a comparative analysis with the highly virulent lineage I American strain (WNVNY99), the low-pathogenicity lineage II strain (B956), a benign Australian strain, Kunjin (WNVKUN), the African WNV-like Koutango virus (WNVKOU), and a WNV-like isolate from Sarawak, Malaysia (WNVSarawak), were assessed for neuroinvasive properties in a murine model and for their replication kinetics in vitro. While WNVNY99 replicated to the highest levels in vitro, in vivo mouse challenge revealed that WNVKOU was more virulent, with a shorter time to onset of neurological disease and higher morbidity. Histological analysis of WNVKOU- and WNVNY99-infected brain and spinal cords demonstrated more prominent meningoencephalitis and the presence of viral antigen in WNVKOU-infected mice. Enhanced virulence of WNVKOU also was associated with poor viral clearance in the periphery (sera and spleen), a skewed innate immune response, and poor neutralizing antibody development. These data demonstrate, for the first time, potent neuroinvasive and neurovirulent properties of a WNV-like virus outside lineages I and II.
Gene reassortment has proved useful in improving yields of influenza A antigens of egg-based inactivated vaccines, but similar approaches have been difficult with influenza B antigens. Current regulations for influenza vaccine seed viruses limit the number of egg passages and as a result resultant yields from influenza B vaccine seed viruses are frequently inconsistent. Therefore, reliable approaches to enhance yields of influenza B vaccine seed viruses are required for efficient vaccine manufacture. In the present study three stable cold-adapted (ca) mutants, caF, caM and caB derived from seasonal epidemic strains, B/Florida/4/2006, B/Malaysia/2506/2004 and B/Brisbane/60/2008 were prepared, which produced high hemagglutinin antigen yields and also increased viral yields of reassortants possessing the desired 6:2 gene constellation. The results demonstrate that consistent improvements in yields of influenza B viruses can be obtained by cold adaptation following extended passage. Taken together, the three ca viruses were shown to have potential as donor viruses for the preparation of high-yielding influenza B vaccine viruses by reassortment.
Matched MeSH terms: Reassortant Viruses/genetics; Reassortant Viruses/growth & development
Male-specific RNA coliphages (FRNA) have been recommended as indicators of fecal contamination and of the virological quality of water. In this study, 16 river water and 183 animal fecal samples were examined for the presence of FRNA coliphages by a plaque assay using Salmonella typhimurium WG49 and WG25 to differentiate between male-specific and somatic phages, a RNase spot test to differentiate between DNA and RNA phages and a reverse transcriptase-polymerase chain reaction (RT-PCR) for the specific identification of FRNA phages. The overall recovery rate for F-specific coliphages was 8.0%. (4.4% from animal fecal matter and 50% from river water samples). Plaque counts were generally low (< 6 x 10(2) pfu per g feces or ml water), with FRNA (6.5%) and Male-specific DNA coliphages (FDNA) (7.0%) phages occurring at almost equal frequencies. The RT-PCR was positive in all FRNA plaques and was able to identify FRNA phages in mixed populations of FRNA, FDNA and somatic phages.