Methods: Human ALDH1+ BCSCs were grown in serum-free Dulbecco's Modified Eagle Medium (DMEM)/F12, while MCF-7 and MDA-MB-231 were cultured in DMEM supplemented with 10% foetal bovine serum under standard conditions. Total RNA was extracted using the Tripure Isolation Reagent. The relative mRNA expressions of OCT4, ALDH1A1 and CD44 associated with stemness as well as TGF-β1, TβR1, ERα1 and MnSOD associated with aggressiveness in BCSCs and MCF-7 cells were determined using the quantitative real-time PCR (qRT-PCR).
Results: The mRNA expressions of OCT4 (5.19-fold ± 0.338; P = 0.001), ALDH1A1 (3.67-fold ± 0.523; P = 0.006), CD44 (2.65-fold ± 0.307; P = 0.006), TGF-β1 (22.89-fold ± 6.840; P = 0.015), TβR1 (3.74-fold ± 1.446; P = 0.045) and MnSOD (4.6-fold ± 1.096; P = 0.014) were higher in BCSCs than in MCF-7 but were almost similar to MDA-MB-231 cells. In contrast, the ERα1 expression of BCSCs (0.97-fold ± 0.080; P = 0.392) was similar to MCF-7 cells, indicating that BSCSs are oestrogen-dependent breast cancer cells.
Conclusion: The oestrogen-dependent BCSCs express stemness and aggressiveness genes at a higher level compared to oestrogen-dependent MCF-7 but are almost similar to oestrogen-independent MDA-MB-231 cells.
OBJECTIVES: This study has aimed to establish optimum conditions to generate and characterize MSC from human umbilical cord (UC-MSC).
MATERIALS AND METHODS: To optimize MSC population growth, basic fibroblast growth factor (bFGF) was utilized in culture media. Effects of bFGF on expansion kinetics, cell cycle, survival of UC-MSC, cytokine secretion, expression of early stem-cell markers and immunomodulation were investigated.
RESULTS: bFGF supplementation profoundly enhanced UC-MSC proliferation by reducing population doubling time without altering immunophenotype and immunomodulatory function of UC-MSC. However, cell cycle studies revealed that bFGF drove the cells into the cell cycle, as a higher proportion of cells resided in S phase and progressed into M phase. Consistent with this, bFGF was shown to promote expression of cyclin D proteins and their relevant kinases to drive UC-MSC to transverse cell cycle check points, thus, committing the cells to DNA synthesis. Furthermore, supplementation with bFGF changed the cytokine profiles of the cells and reduced their apoptotic level.
CONCLUSION: Our study showed that bFGF supplementation of UC-MSC culture enhanced the cells' growth kinetics without compromising their nature.