Displaying publications 1021 - 1040 of 1298 in total

Abstract:
Sort:
  1. Dhurga DB, Suresh K, Tan TC
    PLoS One, 2016;11(7):e0155390.
    PMID: 27471855 DOI: 10.1371/journal.pone.0155390
    The role and function of the granular life cycle stage in Blastocystis sp, remains uncertain despite suggestions being made that the granules are metabolic, reproductive and lipid in nature. This present study aims to understand granular formation by triggering apoptosis in Blastocystis sp. by treating them with metronidazole (MTZ). Blastocystis sp.cultures of 4 sub-types namely 1, 2, 3 and 5 when treated with 0.01 and 0.0001 mg/ml of metronidazole (MTZ) respectively showed many of the parasites to be both viable and apoptotic (VA). Treated subtype 3 isolates exhibited the highest number of granular forms i.e. 88% (p<0.001) (0.0001 mg/ml) and 69% (p<0.01) (0.01 mg/ml) respectively at the 72 h in in vitro culture compared to other subtypes. These VA forms showed distinct granules using acridine orange (AO) and 4',6-diamino-2-phenylindole (DAPI) staining with a mean per cell ranging from 5 in ST 5 to as high as 16 in ST 3. These forms showed intact mitochondria in both viable apoptotic (VA) and viable non-apoptotic (VNA) cells with a pattern of accumulation of lipid droplets corresponding to viable cells. Granular VA forms looked ultra-structurally different with prominent presence of mitochondria-like organelle (MLO) and a changed mitochondrial trans-membrane potential with thicker membrane and a highly convoluted inner membrane than the less dense non-viable apoptotic (NVA) cells. This suggests that granular formation during apoptosis is a self-regulatory mechanism to produce higher number of viable cells in response to treatment. This study directs the need to search novel chemotherapeutic approaches by incorporating these findings when developing drugs against the emerging Blastocystis sp. infections.
    Matched MeSH terms: Microscopy, Electron, Transmission
  2. Jensen KS, Adams R, Bennett RS, Bernbaum J, Jahrling PB, Holbrook MR
    PLoS One, 2018;13(6):e0199534.
    PMID: 29920552 DOI: 10.1371/journal.pone.0199534
    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that can result in severe pulmonary disease and fatal encephalitis in humans and is responsible for outbreaks in Bangladesh, Malaysia, Singapore, India and possibly the Philippines. NiV has a negative-sense RNA genome that contains six genes and serves as a template for production of viral mRNA transcripts. NiV mRNA transcripts are subsequently translated into viral proteins. Traditionally, NiV quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) assays have relied on using primer sets that amplify a target (N that encodes the nucleocapsid) within the coding region of the viral gene that also amplifies viral mRNA. Here we describe a novel one-step qRT-PCR assay targeting the intergenic region separating the viral F and G proteins, thereby eliminating amplification of the viral mRNA. This assay is more accurate than the traditional qRT-PCR in quantifying concentrations of viral genomic RNA.
    Matched MeSH terms: Microscopy, Electron
  3. Goh ZH, Tan SG, Bhassu S, Tan WS
    J Virol Methods, 2011 Jul;175(1):74-9.
    PMID: 21536072 DOI: 10.1016/j.jviromet.2011.04.021
    Macrobrachium rosenbergii nodavirus (MrNv) infects giant freshwater prawns and causes white tail disease (WTD). The coding region of the capsid protein of MrNv was amplified with RT-PCR and cloned into the pTrcHis2-TOPO vector. The recombinant plasmid was introduced into Escherichia coli and protein expression was induced with IPTG. SDS-PAGE showed that the recombinant protein containing the His-tag and myc epitope has a molecular mass of about 46 kDa and it was detected by the anti-His antibody in Western blotting. The protein was purified using immobilized metal affinity chromatography (IMAC) and transmission electron microscopic analysis revealed that the recombinant protein assembled into virus-like particles (VLPs) with a diameter of about 30±3 nm. The size of the particles was confirmed by dynamic light scattering. Nucleic acids were extracted from the VLPs and treatment with nucleases showed that they were mainly RNA molecules. This is the first report describing the production of MrNv capsid protein in bacteria and its assembly into VLPs.
    Matched MeSH terms: Microscopy, Electron, Transmission
  4. Daood U, Ilyas MS, Ashraf M, Akbar M, Asif A, Khan AS, et al.
    J Oral Maxillofac Surg, 2024 Sep;82(9):1147-1162.
    PMID: 38830601 DOI: 10.1016/j.joms.2024.05.004
    BACKGROUND: Treated or coated sutures promise to prevent contamination of wounds.

    PURPOSE: The purpose of the study was to coat surgical sutures with a new quaternary ammonium silane (QAS) antimicrobial compound at two different application temperatures and then to evaluate the resulting structural, physical, mechanical, and biological properties.

    STUDY DESIGN, SETTING, SAMPLE: In vitro and in vivo studies were conducted using male albino Wistar rats approved by the Joint Ethical Committee of IMU and Postgraduate Medical Institute, Lahore. Only suture samples, coated uniformly with verified presence of the compound and of adequate length were used. Samples which were not coated uniformly and with inadequate length or damaged were excluded.

    PREDICTOR VARIABLE: Predictor variables were sutures with and without QAS coatings and different temperatures. Sutures were coated with QAS at 0.5 and 1.0% wt/vol using the dip coating technique and sutures with and without QAS coating were tested at 25 and 40 °C temperatures.

    MAIN OUTCOME VARIABLE(S): Outcome variables of structural and physico-mechanical properties of QAS-coated and non-coated sutures were measured using Fourier transform infrared spectroscopy (for structural changes), confocal laser and scanning electron (for diameter changes), and tensile strength/modulus (for mechanical testing). Biologic outcome variables were tested (bacterial viability); macrophage cultures from Wistar rats were tested (M1/M2 polarization detecting IL-6 and IL-10). Macrophage cells were analyzed with CD80+ (M1) and CD163+ (M2). Chemotaxis index was calculated as a ratio of quantitative fluorescence of cells.

    COVARIATES: Not applicable.

    ANALYSES: Ordinal data among groups were compared using the Wilcoxon Mann-Whitney U test along with the comparison of histological analysis using the Wilcoxon Sign-rank test (P 

    Matched MeSH terms: Microscopy, Electron, Scanning
  5. Dahmardeh N, Shabani M, Basiri M, Kalantaripour TP, Asadi-Shekaari M
    Malays J Med Sci, 2019 Jul;26(4):28-38.
    PMID: 31496891 DOI: 10.21315/mjms2019.26.4.4
    Background: There is a meaningful necessity for a targeted therapy of essential tremor (ET), as medications have not been developed specifically for ET. For nearly a century, many drugs have been applied in the treatment of tremor but the drug treatment of ET remains still unknown. Some potential therapeutic factors such fingolimod (FTY720) can be effectively used to treat ET in animals. In the present research, the effect of FTY720, the immunomodulatory sphingosine 1-phosphate (S1P) analog, on degeneration of cerebellar and olivary neurons induced by harmaline in male rats was investigated.

    Methods: The animals were allotted into control dimethyl sulfoxide (DMSO), saline + harmaline [30 mg/kg, intraperitoneally, (i.p.)], harmaline + FTY720 (1 mg/kg, i.p, 1 h and 24 h before harmaline injection) groups (n = 10). The cerebellum and inferior olive nucleus (ION) were studied for neuronal degeneration using immunohistochemistry (IHC) and ultrastructural study by transmission electron microscopy (TEM) techniques.

    Results: Harmaline caused neuronal cell loss, caspase-3 mediated apoptosis, astrocytosis and ultrastructural changes in cerebellar Purkinje cells and inferior olive neurons. FTY720 exhibited neuroprotective effects on cerebellar Purkinje cells and inferior olivary neurons.

    Conclusion: These results suggest that FTY720 has potential efficacy for prevention of ET neurodegeneration and astrocytosis induced by harmaline in male rats.

    Matched MeSH terms: Microscopy, Electron, Transmission
  6. Shameli K, Bin Ahmad M, Zargar M, Yunus WM, Ibrahim NA, Shabanzadeh P, et al.
    Int J Nanomedicine, 2011;6:271-84.
    PMID: 21499424 DOI: 10.2147/IJN.S16043
    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  7. Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, et al.
    Int J Nanomedicine, 2015;10:2079-88.
    PMID: 25844038 DOI: 10.2147/IJN.S75874
    Polysaccharides are attracting the vigil eye of researchers in order to design the green synthesis of silver nanoparticles (Ag NPs) of diverse size, shape, and application. We report an environmentally friendly method to synthesize Ag NPs where no physical reaction conditions were employed. Hydroxypropylcellulose (HPC) was used as a template nanoreactor, stabilizer, and capping agent to obtain Ag NPs. Different concentrations of AgNO3 solutions (50 mmol, 75 mmol, and 100 mmol) were mixed with a concentrated aqueous solution of HPC and the progress of the reaction was monitored by noting color changes of the reaction mixture at different reaction times for up to 24 hours. Characteristic ultraviolet-visible spectroscopy (UV/Vis) absorption bands of Ag NPs were observed in the range of 388-452 nm. The morphology of the Ag NPs was studied by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy. The TEM images confirmed that the size of the Ag NPs was in the range of 25-55 nm. Powder X-ray diffraction studies showed that the crystal phase of the Ag NPs was face-centered cubic. The as-prepared Ag NPs were found to be stable, and no changes in size and morphology were observed after storage in HPC thin films over 1 year, as indicated by UV/Vis spectra. So, the present work furnishes a green and economical strategy for the synthesis and storage of stable Ag NPs. As-synthesized Ag NPs showed significant antimicrobial activity against different bacterial (Escherichia coli, Staphylococcus epidermidis, S. aureus, Bacillus subtilis, Pseudomonas aeruginosa) and fungal strains (Actinomycetes and Aspergillus niger).
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  8. Chan KK, Wong RS, Mohamed SM, Ibrahim TA, Abdullah M, Nadarajah VD
    PMID: 22591286
    Bacillus thuringiensis (Bt) parasporal proteins with selective anticancer activity have recently garnered interest. This study determines the efficacy and mode of cell death of Bt 18 parasporal proteins against 3 leukemic cell lines (CEM-SS, CCRF-SB and CCRF-HSB-2).Cell-based biochemical analysis aimed to determine cell viability and the percentage of apoptotic cell death in treated cell lines; ultrastructural analysis to study apoptotic changes and Western blot to identify the parasporal proteins' binding site were performed. Bt 18 parasporal proteins moderately decreased viability of leukemic cells but not that of normal human T lymphocytes. Further purification of the proteins showed changes in inhibition selectivity. Phosphatidylserine externalization, active caspase-3, cell cycle, and ultrastructural analysis confirmed apoptotic activity and S-phase cell-cycle arrest. Western blot analysis demonstrated glyceraldehyde 3-phosphate dehydrogenase as a binding protein. We suggest that Bt 18 parasporal proteins inhibit leukemic cell viability by cell-cycle arrest and apoptosis and that glyceraldehyde 3-phosphate dehydrogenase binding initiates apoptosis.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  9. Al-Haddawi MH, Jasni S, Israf DA, Zamri-Saad M, Mutalib AR, Sheikh-Omar AR
    Res Vet Sci, 2001 Jun;70(3):191-7.
    PMID: 11676614
    Sixteen 8- to 9-week-old Pasteurella multocida-free New Zealand White rabbits were divided into two equal groups. The first group was inoculated intranasally with P multocida serotype D:1 strain and the second group that was inoculated with phosphate-buffered saline (PBS) only was used as a control group. Pasteurella multocida was isolated from the nasal cavity of all infected rabbits in group 1 and from tracheal swabs of seven rabbits in this group. Four rabbits in group 1 died with clinical signs of septicaemia, two rabbits had mucopurulent nasal discharge and pneumonic lesions and the other two did not show any clinical signs or gross lesions. The ultrastructural changes detected were deciliation or clumping of cilia of ciliated epithelium, cellular swelling, vacuolation and sloughing. The subepithelial capillaries showed congestion, intravascular fibrin deposition, platelets aggregation and endothelial injury. Pasteurella multocida was observed attached to the injured endothelial cells. Heterophils, mast cells, vacuolated monocytes and macrophages infiltrated the lamina propria and between the degenerated epithelial cells.
    Matched MeSH terms: Microscopy, Electron/veterinary
  10. Lim KT, Amanah A, Chear NJ, Zahari Z, Zainuddin Z, Adenan MI
    Exp Parasitol, 2018 Jan;184:57-66.
    PMID: 29175017 DOI: 10.1016/j.exppara.2017.11.007
    In our ongoing work searching for new trypanocidal lead compounds from Malaysian plants, two known piperidine alkaloids (+)-spectaline (1) and iso-6-spectaline (2) were isolated from the leaves of Senna spectabilis (sin. Cassia spectabilis). Analysis of the 1H and 13C NMR spectra showed that 1 and 2 presented analytical and spectroscopic data in full agreement with those published in the literature. All compounds were screened in vitro against Trypanosoma brucei rhodesiense in comparison to the standard drug pentamidine. Compound 1 and 2 inhibited growth of T. b. rhodesiense with an IC50 value of 0.41 ± 0.01 μM and 0.71 ± 0.01 μM, without toxic effect on L6 cells with associated a selectivity index of 134.92 and 123.74, respectively. These data show that piperidine alkaloids constitute a class of natural products that feature a broad spectrum of biological activities, and are potential templates for the development of new trypanocidal drugs. To our knowledge, the compounds are being reported for the first time to have inhibitory effects on T. b. rhodesiense. The ultrastructural alterations in the trypanosome induced by 1 and 2, leading to programmed cell death were characterized using electron microscopy. These alterations include wrinkling of the trypanosome surface, formation of autophagic vacuoles, disorganization of kinetoplast, and swelling of the mitochondria. These findings evidence a possible autophagic cell death.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  11. Vijayarathna S, Zakaria Z, Chen Y, Latha LY, Kanwar JR, Sasidharan S
    Molecules, 2012 Apr 26;17(5):4860-77.
    PMID: 22538489 DOI: 10.3390/molecules17054860
    The urgent need to treat multi-drug resistant pathogenic microorganisms in chronically infected patients has given rise to the development of new antimicrobials from natural resources. We have tested Elaeis guineensis Jacq (Arecaceae) methanol extract against a variety of bacterial, fungal and yeast strains associated with infections. Our studies have demonstrated that E. guineensis exhibits excellent antimicrobial activity in vitro and in vivo against the bacterial and fungal strains tested. A marked inhibitory effect of the E. guineensis extracts was observed against C. albicans whereby E. guineensis extract at ½, 1, or 2 times the MIC significantly inhibited C. albicans growth with a noticeable drop in optical density (OD) of the bacterial culture. This finding confirmed the anticandidal activity of the extract on C. albicans. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated C. albicans. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the yeast cells. In vivo antimicrobial activity was studies in mice that had been inoculated with C. albicans and exhibited good anticandidal activity. The authors conclude that the extract may be used as a candidate for the development of anticandidal agent.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  12. Rajikin MH, Latif ES, Mar MR, Mat Top AG, Mokhtar NM
    Med Sci Monit, 2009 Dec;15(12):BR378-83.
    PMID: 19946227
    Previous studies have shown that nicotine enhances oxidative DNA damage and leads to increased lipid peroxidation, which affects embryo development. The present study investigated the effect of daily supplementation of gamma-tocotrienol on oocytes of nicotine-treated mice.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  13. Shinn AP, Mühlhölzl AP, Coates CJ, Metochis C, Freeman MA
    J Invertebr Pathol, 2015 Feb;125:81-6.
    PMID: 25499897 DOI: 10.1016/j.jip.2014.12.002
    An outbreak of the sessile peritrich Zoothamnium duplicatum in a pilot, commercial-scale Limulus polyphemus hatchery resulted in the loss of ∼96% (40,000) second/third instar larvae over a 61day period. peritrich growth was heavy, leading to mechanical obstruction of the gills and physical damage. The peritrichs were controlled without resultant loss of juvenile crabs by administering 10ppm chlorine in freshwater for 1h and the addition of aquarium grade sand; a medium into which the crabs could burrow and facilitate cleaning of the carapace. Peritrich identity was confirmed from a partial SSU rDNA contiguous sequence of 1343bp (99.7% similarity to Z. duplicatum).
    Matched MeSH terms: Microscopy, Electron, Scanning
  14. Nasrullah A, Khan H, Khan AS, Man Z, Muhammad N, Khan MI, et al.
    ScientificWorldJournal, 2015;2015:562693.
    PMID: 25705714 DOI: 10.1155/2015/562693
    The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R (2)) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution.
    Matched MeSH terms: Microscopy, Electron, Scanning
  15. Misson M, Zhang H, Jin B
    J R Soc Interface, 2015 Jan 06;12(102):20140891.
    PMID: 25392397 DOI: 10.1098/rsif.2014.0891
    The nanobiocatalyst (NBC) is an emerging innovation that synergistically integrates advanced nanotechnology with biotechnology and promises exciting advantages for improving enzyme activity, stability, capability and engineering performances in bioprocessing applications. NBCs are fabricated by immobilizing enzymes with functional nanomaterials as enzyme carriers or containers. In this paper, we review the recent developments of novel nanocarriers/nanocontainers with advanced hierarchical porous structures for retaining enzymes, such as nanofibres (NFs), mesoporous nanocarriers and nanocages. Strategies for immobilizing enzymes onto nanocarriers made from polymers, silicas, carbons and metals by physical adsorption, covalent binding, cross-linking or specific ligand spacers are discussed. The resulting NBCs are critically evaluated in terms of their bioprocessing performances. Excellent performances are demonstrated through enhanced NBC catalytic activity and stability due to conformational changes upon immobilization and localized nanoenvironments, and NBC reutilization by assembling magnetic nanoparticles into NBCs to defray the high operational costs associated with enzyme production and nanocarrier synthesis. We also highlight several challenges associated with the NBC-driven bioprocess applications, including the maturation of large-scale nanocarrier synthesis, design and development of bioreactors to accommodate NBCs, and long-term operations of NBCs. We suggest these challenges are to be addressed through joint collaboration of chemists, engineers and material scientists. Finally, we have demonstrated the great potential of NBCs in manufacturing bioprocesses in the near future through successful laboratory trials of NBCs in carbohydrate hydrolysis, biofuel production and biotransformation.
    Matched MeSH terms: Microscopy, Electron, Scanning
  16. Kupaei RH, Alengaram UJ, Jumaat MZ
    ScientificWorldJournal, 2014;2014:898536.
    PMID: 25531006 DOI: 10.1155/2014/898536
    This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.
    Matched MeSH terms: Microscopy, Electron, Scanning
  17. Zulkifli FH, Jahir Hussain FS, Abdull Rasad MS, Mohd Yusoff M
    J Biomater Appl, 2015 Feb;29(7):1014-27.
    PMID: 25186524 DOI: 10.1177/0885328214549818
    The aim of this research is to develop biocompatible nanofibrous mats using hydroxyethyl cellulose with improved cellular adhesion profiles and stability and use these fibrous mats as potential scaffold for skin tissue engineering. Glutaraldehyde was used to treat the scaffolds water insoluble as well as improve their biostability for possible use in biomedical applications. Electrospinning of hydroxyethyl cellulose (5 wt%) with poly(vinyl alcohol) (15 wt%) incorporated with and without collagen was blended at (1:1:1) and (1:1) ratios, respectively, and was evaluated for optimal criteria as tissue engineering scaffolds. The nanofibrous mats were crosslinked and characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Scanning electron microscope images showed that the mean diameters of blend nanofibers were gradually increased after chemically crosslinking with glutaraldehyde. Fourier transform infrared spectroscopy was carried out to understand chemical interactions in the presence of aldehyde groups. Thermal characterization results showed that the stability of hydroxyethyl cellulose/poly(vinyl alcohol) and hydroxyethyl cellulose/poly(vinyl alcohol)/collagen nanofibers was increased with glutaraldehyde treatment. Studies on cell-scaffolds interaction were carried out by culturing human fibroblast (hFOB) cells on the nanofibers by assessing the growth, proliferation, and morphologies of cells. The scanning electron microscope results show that better cell proliferation and attachment appeared on hydroxyethyl cellulose/poly(vinyl alcohol)/collagen substrates after 7 days of culturing, thus, promoting the potential of electrospun scaffolds as a promising candidate for tissue engineering applications.
    Matched MeSH terms: Microscopy, Electron, Scanning
  18. Lau SC, Lim HN, Basri M, Fard Masoumi HR, Ahmad Tajudin A, Huang NM, et al.
    PLoS One, 2014;9(8):e104695.
    PMID: 25127038 DOI: 10.1371/journal.pone.0104695
    In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the "insoluble" enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60 °C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions.
    Matched MeSH terms: Microscopy, Electron, Scanning
  19. Tan TJ, Wang D, Moraru CI
    J Dairy Sci, 2014;97(8):4759-71.
    PMID: 24881794 DOI: 10.3168/jds.2014-7957
    The main challenge in microfiltration (MF) is membrane fouling, which leads to a significant decline in permeate flux and a change in membrane selectivity over time. This work aims to elucidate the mechanisms of membrane fouling in cold MF of skim milk by identifying and quantifying the proteins and minerals involved in external and internal membrane fouling. Microfiltration was conducted using a 1.4-μm ceramic membrane, at a temperature of 6±1°C, cross-flow velocity of 6m/s, and transmembrane pressure of 159kPa, for 90min. Internal and external foulants were extracted from a ceramic membrane both after a brief contact between the membrane and skim milk, to evaluate instantaneous adsorption of foulants, and after MF. Four foulant streams were collected: weakly attached external foulants, weakly attached internal foulants, strongly attached external foulants, and strongly attached internal foulants. Liquid chromatography coupled with tandem mass spectrometry analysis showed that all major milk proteins were present in all foulant streams. Proteins did appear to be the major cause of membrane fouling. Proteomics analysis of the foulants indicated elevated levels of serum proteins as compared with milk in the foulant fractions collected from the adsorption study. Caseins were preferentially introduced into the fouling layer during MF, when transmembrane pressure was applied, as confirmed both by proteomics and mineral analyses. The knowledge generated in this study advances the understanding of fouling mechanisms in cold MF of skim milk and can be used to identify solutions for minimizing membrane fouling and increasing the efficiency of milk MF.
    Matched MeSH terms: Microscopy, Electron, Scanning
  20. Mishra RK, Ramasamy K, Lim SM, Ismail MF, Majeed AB
    J Mater Sci Mater Med, 2014 Aug;25(8):1925-39.
    PMID: 24831081 DOI: 10.1007/s10856-014-5228-y
    The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.
    Matched MeSH terms: Microscopy, Electron
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links