Displaying publications 1061 - 1080 of 3311 in total

Abstract:
Sort:
  1. Lim KL, Teoh HK, Choong PF, Teh HX, Cheong SK, Kamarul T
    Expert Opin Biol Ther, 2016 07;16(7):941-51.
    PMID: 27070264 DOI: 10.1517/14712598.2016.1174211
    INTRODUCTION: Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model.

    AREAS COVERED: Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents.

    EXPERT OPINION: Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

    Matched MeSH terms: Induced Pluripotent Stem Cells/physiology; Induced Pluripotent Stem Cells/transplantation
  2. Leow SN, Luu CD, Hairul Nizam MH, Mok PL, Ruhaslizan R, Wong HS, et al.
    PLoS One, 2015;10(6):e0128973.
    PMID: 26107378 DOI: 10.1371/journal.pone.0128973
    To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on retinal structure and function in Royal College of Surgeons (RCS) rats.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/physiology*
  3. Jayalakshmi P, Malik AK, Soo-Hoo HS
    Malays J Pathol, 1994 Jun;16(1):43-7.
    PMID: 16329575
    Fifty-nine cases of tuberculous cervical lymphadenitis were analysed histologically. Characteristic epithelioid cell granulomas were seen in all the cases with central areas of caseation necrosis in 96.6% (57/59) of these cases. The diagnosis of tuberculosis was further established by the demonstration of acid-fast bacilli (AFB) in the tissue sections in 29 cases. These AFB, although occasional, were found more frequently within the epithelioid cells as compared with other zones of the granuloma. There was no significant association between necrosis and bacillary content. We conclude that light microscopical assessment is still a useful screening method to diagnose tuberculosis in cases of cervical lymphadenopathy.
    Matched MeSH terms: Epithelioid Cells/microbiology; Epithelioid Cells/pathology
  4. Cogger VC, Mohamad M, Solon-Biet SM, Senior AM, Warren A, O'Reilly JN, et al.
    Am J Physiol Heart Circ Physiol, 2016 05 01;310(9):H1064-70.
    PMID: 26921440 DOI: 10.1152/ajpheart.00949.2015
    Fenestrations are pores within the liver sinusoidal endothelial cells (LSECs) that line the sinusoids of the highly vascularized liver. Fenestrations facilitate the transfer of substrates between blood and hepatocytes. With pseudocapillarization of the hepatic sinusoid in old age, there is a loss of fenestrations. LSECs are uniquely exposed to gut-derived dietary and microbial substrates delivered by the portal circulation to the liver. Here we studied the effect of 25 diets varying in content of macronutrients and energy on LSEC fenestrations using the Geometric Framework method in a large cohort of mice aged 15 mo. Macronutrient distribution rather than total food or energy intake was associated with changes in fenestrations. Porosity and frequency were inversely associated with dietary fat intake, while fenestration diameter was inversely associated with protein or carbohydrate intake. Fenestrations were also linked to diet-induced changes in gut microbiome, with increased fenestrations associated with higher abundance of Firmicutes and reduced abundance of Bacteroidetes Diet-induced changes in levels of several fatty acids (C16:0, C19:0, and C20:4) were also significantly inversely associated with fenestrations, suggesting a link between dietary fat and modulation of lipid rafts in the LSECs. Diet influences fenestrations and these data reflect both the key role of the LSECs in clearing gut-derived molecules from the vascular circulation and the impact these molecules have on LSEC morphology.
    Matched MeSH terms: Endothelial Cells/metabolism*; Endothelial Cells/ultrastructure
  5. Wen Jun L, Pit Foong C, Abd Hamid R
    Biomed Pharmacother, 2019 Oct;118:109221.
    PMID: 31545225 DOI: 10.1016/j.biopha.2019.109221
    Ardisia crispa Thunb. A. DC. (Primulaceae) has been used extensively as folk-lore medicine in South East Asia including China and Japan to treat various inflammatory related diseases. Ardisia crispa root hexane fraction (ACRH) has been thoroughly studied by our group and it has been shown to exhibit anti-inflammatory, anti-hyperalgesic, anti-arthritic, anti-ulcer, chemoprevention and suppression against inflammation-induced angiogenesis in various animal model. Nevertheless, its effect against human endothelial cells in vitro has not been reported yet. Hence, the aim of the study is to investigate the potential antiangiogenic property of ACRH in human umbilical vein endothelial cells (HUVECs) and zebrafish embryo model. ACRH was separated from the crude ethanolic extract of the plant's root in prior to experimental studies. MTT assay revealed that ACRH exerted a concentration-dependent antiproliferative effect on HUVEC with the IC50 of 2.49 ± 0.04 μg/mL. At higher concentration (10 μg/mL), apoptosis was induced without affecting the cell cycle distribution. Angiogenic properties including migration, invasion and differentiation of HUVECs, evaluated via wound healing, trans-well invasion and tube formation assay respectively, were significantly suppressed by ACRH in a concentration-dependent manner. Noteworthily, significant antiangiogenic effects were observed even at the lowest concentration used (0.1 μg/mL). Expression of proMMP-2, vascular endothelial growth factor (VEGF)-C, VEGF-D, Angiopoietin-2, fibroblast growth factor (FGF)-1, FGF-2, Follistatin, and hepatocyte growth factor (HGF) were significantly reduced in various degrees by ACRH. The ISV formation in zebrafish embryo was significantly suppressed by ACRH at the concentration of 5 μg/mL. These findings revealed the potential of ACRH as antiangiogenic agent by suppressing multiple proangiogenic proteins. Thus, it can be further verified via the transcription of these proteins from their respective DNA, in elucidating their exact pathways.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism*; Human Umbilical Vein Endothelial Cells/pathology
  6. Defo Deeh PB, Watcho P, Wankeu-Nya M, Ngadjui E, Usman UZ
    Andrologia, 2019 Apr;51(3):e13216.
    PMID: 30536879 DOI: 10.1111/and.13216
    This study evaluated the effects of the methanolic extract of Guibourtia tessmannii (GT) and selenium (Se) on cell viability, intracellular calcium concentration ([Ca2+ ]i ), apoptosis and oxidative stress through transient receptor potential vanilloid 1 (TRPV1) channel activity in CCL-97 (R2C) tumour Leydig cells. The cells were divided into nine groups and treated as follows: (a)-Control, (b)-Capsazepine (CPZ, 0.1 mM, a TRPV1 channel blocker), (c)-Capsaicin (CAP, 0.01 mM, a TRPV1 channel activator), (d)-GT (500 μg/ml), (e)-GT+CPZ, (f)-GT+CAP, (g)-Se (200 nM), (h)-Se+CPZ and (i)-Se+CAP. After treatments, cell viability, [Ca2+ ]i , apoptosis, caspase 3/9, reactive oxygen species (ROS) and mitochondrial membrane depolarisation (MMD) were evaluated. The [Ca2+ ]i , apoptosis, caspase 3/9, MMD and ROS levels were significantly (p 
    Matched MeSH terms: Leydig Cells/drug effects*; Leydig Cells/metabolism
  7. Rafieerad A, Yan W, Sequiera GL, Sareen N, Abu-El-Rub E, Moudgil M, et al.
    Adv Healthc Mater, 2019 08;8(16):e1900569.
    PMID: 31265217 DOI: 10.1002/adhm.201900569
    Inflammation is tightly linked to tissue injury. In regenerative medicine, immune activation plays a key role in rejection of transplanted stem cells and reduces the efficacy of stem cell therapies. Next-generation smart biomaterials are reported to possess multiple biologic properties for tissue repair. Here, the first use of 0D titanium carbide (Ti3 C2 ) MXene quantum dots (MQDs) for immunomodulation is presented with the goal of enhancing material-based tissue repair after injury. MQDs possess intrinsic immunomodulatory properties and selectively reduce activation of human CD4+ IFN-γ+ T-lymphocytes (control 87.1 ± 2.0%, MQDs 68.3 ± 5.4%) while promoting expansion of immunosuppressive CD4+ CD25+ FoxP3+ regulatory T-cells (control 5.5 ± 0.7%, MQDs 8.5 ± 0.8%) in a stimulated lymphocyte population. Furthermore, MQDs are biocompatible with bone marrow-derived mesenchymal stem cells and induced pluripotent stem cell-derived fibroblasts. Finally, Ti3 C2 MQDs are incorporated into a chitosan-based hydrogel to create a 3D platform with enhanced physicochemical properties for stem cell delivery and tissue repair. This composite hydrogel demonstrates increased conductivity while maintaining injectability and thermosensitivity. These findings suggest that this new class of biomaterials may help bridge the translational gap in material and stem cell-based therapies for tissue repair and treatment of inflammatory and degenerative diseases.
    Matched MeSH terms: Mesenchymal Stromal Cells/drug effects; Mesenchymal Stromal Cells/metabolism
  8. Wang M, Ling KH, Tan JJ, Lu CB
    Cells, 2020 06 18;9(6).
    PMID: 32570916 DOI: 10.3390/cells9061489
    Parkinson's Disease (PD) is a neurodegenerative disorder affecting the motor system. It is primarily due to substantial loss of midbrain dopamine (mDA) neurons in the substantia nigra pars compacta and to decreased innervation to the striatum. Although existing drug therapy available can relieve the symptoms in early-stage PD patients, it cannot reverse the pathogenic progression of PD. Thus, regenerating functional mDA neurons in PD patients may be a cure to the disease. The proof-of-principle clinical trials showed that human fetal graft-derived mDA neurons could restore the release of dopamine neurotransmitters, could reinnervate the striatum, and could alleviate clinical symptoms in PD patients. The invention of human-induced pluripotent stem cells (hiPSCs), autologous source of neural progenitors with less ethical consideration, and risk of graft rejection can now be generated in vitro. This advancement also prompts extensive research to decipher important developmental signaling in differentiation, which is key to successful in vitro production of functional mDA neurons and the enabler of mass manufacturing of the cells required for clinical applications. In this review, we summarize the biology and signaling involved in the development of mDA neurons and the current progress and methodology in driving efficient mDA neuron differentiation from pluripotent stem cells.
    Matched MeSH terms: Induced Pluripotent Stem Cells/cytology; Induced Pluripotent Stem Cells/physiology
  9. Ling WC, Liu J, Lau CW, Murugan DD, Mustafa MR, Huang Y
    Biochem Pharmacol, 2017 Jul 15;136:76-85.
    PMID: 28396195 DOI: 10.1016/j.bcp.2017.04.007
    Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25mg/kg/day) was administered via oral gavage for 11days to Ang II (1.2mg/kg/day)-infused C57BL/6J mice (8-10weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1-10nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11days reverses the impaired endothelial function and with a marked inhibition of AT1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/drug effects; Human Umbilical Vein Endothelial Cells/physiology
  10. Kntayya SB, Ibrahim MD, Mohd Ain N, Iori R, Ioannides C, Abdull Razis AF
    Nutrients, 2018 Jun 04;10(6).
    PMID: 29866995 DOI: 10.3390/nu10060718
    Glucoraphenin, a glucosinolate present in large quantities in radish is hydrolysed by myrosinase to form the isothiocyanate sulforaphene, which is believed to be responsible for its chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aim of the study is to assess the cytotoxicity of sulforaphene in HepG2 cells and evaluate its potential to enhance apoptosis. The cytotoxicity of sulforaphene in HepG2 cells was carried out ensuing an initial screening with two other cell lines, MFC-7 and HT-29, where sulforaphene displayed highest toxicity in HepG2 cells following incubation at 24, 48 and 72 h. In contrast, the intact glucosinolate showed no cytotoxicity. Morphological studies indicated that sulforaphene stimulated apoptosis as exemplified by cell shrinkage, blebbing, chromatin condensation, and nuclear fragmentation. The Annexin V assay revealed significant increases in apoptosis and the same treatment increased the activity of caspases -3/7 and -9, whereas a decline in caspase-8 was observed. Impairment of cell proliferation was indicated by cell cycle arrest at the Sub G₀/G₁ phase as compared to the other phases. It may be concluded that sulforaphene, but not its parent glucosinolate, glucoraphenin, causes cytotoxicity and stimulates apoptosis in HepG2 cells.
    Matched MeSH terms: HT29 Cells; Hep G2 Cells; MCF-7 Cells
  11. Bere A, Tayib S, Kriek JM, Masson L, Jaumdally SZ, Barnabas SL, et al.
    Clin Immunol, 2014 Feb;150(2):210-9.
    PMID: 24440646 DOI: 10.1016/j.clim.2013.12.005
    HIV-infected individuals experience more persistent HPV infections and are less likely to resolve genital warts. This study compared phenotype and functions of NK and T cells from genital warts and blood from 67 women. We compared in vitro functional responses of NK and T cells by multiparametric flow cytometry. HIV+ women had significantly lower frequencies of CD4 T cells in warts (p = 0.001) and blood (p = 0.001). While the distribution of NK cell subsets was similar, HIV+ women tended to have lower frequencies of CD56(Dim) NK cells in both blood (p = 0.0001) and warts (p = 0.006) than HIV- women. Wart NK cells from HIV+ women expressed significantly lower CD107a and produced IFN-γ. HAART status was not associated with differences in NK cell functionality. We conclude that wart NK cells from HIV+ women have defects in their ability to degranulate and/or secrete IFN-γ, which may provide insights into why HIV+ women fail to spontaneously resolve genital warts.
    Matched MeSH terms: Killer Cells, Natural/immunology*; Killer Cells, Natural/metabolism
  12. Simon C, Gan QF, Kathivaloo P, Mohamad NA, Dhamodharan J, Krishnan A, et al.
    Int J Mol Sci, 2019 Jan 29;20(3).
    PMID: 30699944 DOI: 10.3390/ijms20030568
    Parkinson's disease (PD) is a neurodegenerative disorder defined by progressive deterioration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Dental pulp stem cells (DPSCs) have been proposed to replace the degenerated dopaminergic neurons due to its inherent neurogenic and regenerative potential. However, the effective delivery and homing of DPSCs within the lesioned brain has been one of the many obstacles faced in cell-based therapy of neurodegenerative disorders. We hypothesized that DPSCs, delivered intranasally, could circumvent these challenges. In the present study, we investigated the therapeutic efficacy of intranasally administered DPSCs in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Human deciduous DPSCs were cultured, pre-labelled with PKH 26, and intranasally delivered into PD mice following MPTP treatment. Behavioural analyses were performed to measure olfactory function and sensorimotor coordination, while tyrosine hydroxylase (TH) immunofluorescence was used to evaluate MPTP neurotoxicity in SNpc neurons. Upon intranasal delivery, degenerated TH-positive neurons were ameliorated, while deterioration in behavioural performances was significantly enhanced. Thus, the intranasal approach enriched cell delivery to the brain, optimizing its therapeutic potential through its efficacious delivery and protection against dopaminergic neuron degeneration.
    Matched MeSH terms: Cells, Cultured; Stem Cells/physiology*
  13. Soe HJ, Manikam R, Raju CS, Khan MA, Sekaran SD
    PLoS One, 2020;15(8):e0237141.
    PMID: 32764789 DOI: 10.1371/journal.pone.0237141
    Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
    Matched MeSH terms: Endothelial Cells/immunology; Endothelial Cells/metabolism
  14. Atif M, Bhatti HN, Haque RA, Iqbal MA, Ahamed Khadeer MB, Majid AMSA
    Appl Biochem Biotechnol, 2020 Jul;191(3):1171-1189.
    PMID: 32002729 DOI: 10.1007/s12010-019-03186-9
    Synthesis and anticancer studies of three symmetrically and non-symmetrically substituted silver(I)-N-Heterocyclic carbene complexes of type [(NHC)2-Ag]PF6 (7-9) and their respective (ligands) benzimidazolium salts (4-6) are described herein. Compound 5 and Ag-NHC-complex 7 were characterized by the single crystal X-ray diffraction technique. Structural studies for 7 showed that the silver(I) center has linear C-Ag-C coordination geometry (180.00(10)o). Other azolium and Ag-NHC analogues were confirmed by H1 and C13-NMR spectroscopy. The synthesized analogues were biologically characterized for in vitro anticancer activity against three cancer cell lines including human colorectal cancer (HCT 116), breast cancer (MCF-7), and erythromyeloblastoid leukemia (K-562) cell lines and in terms of in vivo acute oral toxicity (IAOT) in view of agility and body weight of female rats. In vitro anticancer activity showed the values of IC50 in range 0.31-17.9 μM in case of K-562 and HCT-116 cancer cell lines and 15.1-35.2 μM in case of MCF-7 while taking commercially known anticancer agents 5-fluorouracil, tamoxifen, and betulinic acid which have IC50 values 5.2, 5.5, and 17.0 μM, respectively. In vivo study revealed vigor and agility of all test animals which explores the biocompatibility and non-toxicity of the test analogues.
    Matched MeSH terms: K562 Cells; HCT116 Cells; MCF-7 Cells
  15. Nazemian V, Manaheji H, Sharifi AM, Zaringhalam J
    Cell Mol Biol (Noisy-le-grand), 2018 Jan 31;64(1):19-26.
    PMID: 29412789 DOI: 10.14715/cmb/2018.64.2.5
    Neuroinflammation plays a crucial role in expression of symptoms of numerous autoimmune and neurodegenerative diseases such as pain during rheumatoid arthritis. Overproduction of pro-inflammatory cytokines and activation of intracellular signaling pathways have been strongly implicated in the generation of pathological pain states, particularly at central nervous system sites and induction of spinal neuroinflammatory symptoms. The wide ranges of research to define new therapeutic approaches, including neuroimmune-modulators like stem cells are in progress. Mesenchymal stem cells conditioned medium (MSC-CM) has anti-inflammatory factors which can regulate the immune responses. The aim of this study was to investigate the effect of administration of MSC-CM on behavioral, cellular and molecular aspects of adjuvant-induced arthritis in male Wistar rats. Complete Freund's adjuvant (CFA)-induced arthritis (AA) was caused by single subcutaneous injection of CFA into the rat's hind paw on day 0. MSC-CM was administered daily (i.p.) and during the 21 days of the study after injection. Hyperalgesia, Edema, Serum TNF-α levels and p38MAPK and NF-κB activities were assessed on days 0,7,14 and 21 of the study. The results of this study indicated the role of MSC-CM in reducing inflammatory symptoms, serum TNF-α levels and activity of intracellular signaling pathway factors during different phases of inflammation caused by CFA. It seems that MSC-CM treatment due to its direct effects on inhibition of intracellular signaling pathways and pro-inflammatory cytokines can alleviate inflammatory symptoms and pain during CFA-induced arthritis.
    Matched MeSH terms: Cells, Cultured; Mesenchymal Stromal Cells*
  16. Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, et al.
    Int Immunopharmacol, 2010 Dec;10(12):1532-40.
    PMID: 20850581 DOI: 10.1016/j.intimp.2010.09.001
    The immunoregulatory properties of mesenchymal stem cells (MSC) have been demonstrated on a wide range of cells. Here, we describe the modulatory effects of mouse bone marrow-derived MSC on BV2 microglia proliferation rate, nitric oxide (NO) production and CD40 expression. Mouse bone marrow MSC were co-cultured with BV2 cells at various seeding density ratios and activated with lipopolysaccharide (LPS). We show that MSC exert an anti-proliferative effect on microglia and are potent producers of NO when stimulated by soluble factors released by LPS-activated BV2. MSC suppressed proliferation of both untreated and LPS-treated microglia in a dose-dependent manner, significantly reducing BV2 proliferation at seeding density ratios of 1:0.2 and 1:0.1 (p
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/immunology*
  17. Tan MS, Moore SC, Tabor RF, Fegan N, Rahman S, Dykes GA
    BMC Microbiol, 2016 09 15;16:212.
    PMID: 27629769 DOI: 10.1186/s12866-016-0832-2
    BACKGROUND: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface.

    RESULTS: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin.

    CONCLUSIONS: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

    Matched MeSH terms: Plant Cells/microbiology*; Plant Cells/chemistry
  18. Abbasiliasi S, Tan JS, Bashokouh F, Ibrahim TAT, Mustafa S, Vakhshiteh F, et al.
    BMC Microbiol, 2017 May 23;17(1):121.
    PMID: 28535747 DOI: 10.1186/s12866-017-1000-z
    BACKGROUND: Selection of a microbial strain for the incorporation into food products requires in vitro and in vivo evaluations. A bacteriocin-producing lactic acid bacterium (LAB), Pediococcus acidilactici Kp10, isolated from a traditional dried curd was assessed in vitro for its beneficial properties as a potential probiotic and starter culture. The inhibitory spectra of the bacterial strain against different gram-positive and gram-negative bacteria, its cell surface hydrophobicity and resistance to phenol, its haemolytic, amylolytic and proteolytic activities, ability to produce acid and coagulate milk together with its enzymatic characteristics and adhesion property were all evaluated in vitro.

    RESULTS: P. acidilactici Kp10 was moderately tolerant to phenol and adhere to mammalian epithelial cells (Vero cells and ileal mucosal epithelium). The bacterium also exhibited antimicrobial activity against several gram-positive and gram-negative food-spoilage and food-borne pathogens such as Listeria monocytgenes ATCC 15313, Salmonella enterica ATCC 13311, Shigella sonnei ATCC 9290, Klebsiella oxytoca ATCC 13182, Enterobacter cloaca ATCC 35030 and Streptococcus pyogenes ATCC 12378. The absence of haemolytic activity and proteinase (trypsin) and the presence of a strong peptidase (leucine-arylamidase) and esterase-lipase (C4 and C8) were observed in this LAB strain. P. acidilactici Kp10 also produced acid, coagulated milk and has demonstrated proteolytic and amylolactic activities.

    CONCLUSION: The properties exhibited by P. acidilactici Kp10 suggested its potential application as probiotic and starter culture in the food industry.

    Matched MeSH terms: Epithelial Cells/microbiology; Vero Cells
  19. Jayaram G, Mun KS, Elsayed EM, Sangkar JV
    Diagn Cytopathol, 2005 Jul;33(1):43-8.
    PMID: 15945093
    Tumors of dendritic reticulum cells are rare neoplasms that exhibit significant morphologic overlap with other malignancies. Fine-needle aspiration cytologic appearances of this neoplasm are not well understood. A 33-yr-old woman presented with a rapidly growing nodular mass in the right upper cervical region and right-sided ptosis. Fine-needle aspiration cytology of the mass showed dissociated as well as clustered, large, polygonal cells that showed high nuclear-cytoplasmic ratio. Nuclei were round, oval, or irregular in shape. Large and small blastoid forms with prominent nucleoli and chromatin clumping as well as binucleated cells and cells with lobulated nuclei were seen. Numerous mitoses were observed. The tumor cells expressed focal immunocytochemical reactivity to CD45 and CD68, but were negative for CD2, CD3, CD4, CD8, CD20, CD30, CD45RO, epithelial membrane antigen (EMA), cytokeratin, and HMB45. Histologic sections of the biopsy from the growth showed nodal tissue effaced by a tumor composed of large, pleomorphic neoplastic cells with some binucleate and multinucleate forms resembling Reed-Sternberg cells. The intervening stroma contained numerous small lymphocytes. Tumor cells expressed vimentin, S-100 protein, CD68, and MAC387, but were negative for LCA, CD1a, CD3, CD15, CD20, CD21, CD23, CD30, CD35, carcino-embryonic antigen, HMB45, cytokeratin AE1/3, EMA, myeloperoxidase, lysozyme, smooth-muscle actin, and desmin. The combined histologic and immunohistologic features suggested a histiocytic/dendritic reticulum cell neoplasm and a diagnosis of interdigitating dendritic reticulum cell sarcoma was made.
    Matched MeSH terms: Dendritic Cells, Follicular/metabolism; Dendritic Cells, Follicular/pathology*
  20. Alsalahi A, Alshawsh MA, Chik Z, Mohamed Z
    Exp Anim, 2018 Nov 01;67(4):517-526.
    PMID: 29973470 DOI: 10.1538/expanim.18-0057
    People consume Catha edulis (khat) for its euphoric effect, and type 1 diabetics have claimed that khat could reduce elevated levels of blood sugar. However, khat has been suggested to provoke diabetes mellitus through destruction of pancreatic β-cells. This study investigated the effect of an ethanolic khat extract on pancreatic functions in type 1 diabetes (T1DM)-induced male Sprague-Dawley rats and to assess its in vitro cytotoxicity in rat pancreatic β-cells (RIN-14B). T1DM was induced in a total of 20 rats with a single intraperitoneal injection of 75 mg/kg of streptozotocin. The rats were distributed into four groups (n=5): the diabetic control, 8 IU insulin-treated, 200 mg/kg khat-treated, and 400 mg/kg khat-treated groups. Another 5 rats were included as a nondiabetic control. Body weight, fasting blood sugar, and caloric intake were recorded weekly. Four weeks after treatment, the rats were sacrificed, and blood was collected for insulin, lipid profile, total protein, amylase, and lipase analysis, while pancreases were harvested for histopathology. In vitro, khat exerted moderate cytotoxicity against RIN-14B cells after 24 and 48 h but demonstrated greater inhibition against RIN-14B cells after 72 h. Neither 200 mg/kg nor 400 mg/kg of khat produced any significant reduction in blood sugar; however, 200 mg/kg khat extract provoked more destruction of pancreatic β-cells as compared with the diabetic control. Ultimately, neither 200 mg/kg nor 400 mg/kg of khat extract could produce a hypoglycemic effect in T1DM-induced rats. However, 200 mg/kg of khat caused greater destruction of pancreatic β-cells, implying that khat may cause a direct cytotoxic effect on pancreatic β-cells in vitro.
    Matched MeSH terms: Tumor Cells, Cultured; Insulin-Secreting Cells/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links