Displaying publications 101 - 120 of 454 in total

Abstract:
Sort:
  1. Syazwan A, Rafee BM, Hafizan J, Azman A, Nizar A, Izwyn Z, et al.
    PMID: 22570579 DOI: 10.2147/RMHP.S26567
    To meet the current diversified health needs in workplaces, especially in nonindustrial workplaces in developing countries, an indoor air quality (IAQ) component of a participatory occupational safety and health survey should be included.
    Matched MeSH terms: Air Pollution, Indoor
  2. Abushammala MF, Basri NE, Basri H, Kadhum AA, El-Shafie AH
    Environ Monit Assess, 2013 Jun;185(6):4919-32.
    PMID: 23054277 DOI: 10.1007/s10661-012-2913-5
    Methane (CH₄) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO₂), risking human health and the environment. Microbial CH₄ oxidation in landfill cover soils may constitute a means of controlling CH₄ emissions. The study was intended to quantify CH₄ and CO₂ emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH₄ oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH₄ to CO₂ emissions was 25.4 %, indicating higher CO₂ emissions than CH₄ emissions. Also, the average CH₄ oxidation in the landfill cover soil was 52.5 %. The CH₄ and CO₂ emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH₄ emissions and oxidation (R(2) = 0.46). It can be concluded that the variation in the CH₄ oxidation was mainly attributed to the properties of the landfill cover soil.
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollution/statistics & numerical data
  3. Alnawaiseh NA, Hashim JH, Isa ZM
    Asia Pac J Public Health, 2015 Mar;27(2):NP1742-51.
    PMID: 22899706 DOI: 10.1177/1010539512455046
    The main objective of this cross-sectional comparative study is to observe the relationship between traffic-related air pollutants, particularly particulate matter (PM) of total suspended particulate (TSP) and PM of size 10 µm (PM10), and vehicle traffic in Amman, Jordan. Two study areas were chosen randomly as a high-polluted area (HPA) and low-polluted area (LPA). The findings indicate that TSP and PM10 were still significantly correlated with traffic count even after controlling for confounding factors (temperature, relative humidity, and wind speed): TSP, r = 0.726, P < .001; PM10, r = 0.719, P < .001). There was a significant positive relationship between traffic count and PM level: TSP, P < .001; PM10, P < .001. Moreover, there was a significant negative relationship between temperature and PM10 level (P = .018). Traffic volume contributed greatly to high concentrations of TSP and PM10 in areas with high traffic count, in addition to the effect of temperature.
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollution/analysis*
  4. Abdullah MZ, Saat AB, Hamzah ZB
    Environ Monit Assess, 2012 Jun;184(6):3959-69.
    PMID: 21822578 DOI: 10.1007/s10661-011-2236-y
    Biomonitoring of multi-element atmospheric deposition using terrestrial moss is a well-established technique in Europe. Although the technique is widely known, there were very limited records of using this technique to study atmospheric air pollution in Malaysia. In this present study, the deposition of 11 trace metals surrounding the main petroleum refinery plant in Kerteh Terengganu (eastern part of peninsular Malaysia) has been evaluated using two local moss species, namely Hypnum plumaeforme and Taxithelium instratum as bioindicators. The study was also done by means of observing whether these metals are attributed to work related to oil exploration in this area. The moss samples have been collected at 30 sampling stations in the vicinity of the petrochemical industrial area covering up to 15 km to the south, north, and west in radius. The contents of heavy metal in moss samples were analyzed by energy dispersive x-ray fluorescence technique. Distribution of heavy metal content in all mosses is portrayed using Surfer software. Areas of the highest level of contaminations are highlighted. The results obtained using the principal components analysis revealed that the elements can be grouped into three different components that indirectly reflected three different sources namely anthropogenic factor, vegetation factor, and natural sources (soil dust or substrate) factor. Heavy metals deposited mostly in the distance after 9 km onward to the western part (the average direction of wind blow). V, Cr, Cu, and Hg are believed to have originated from local petrochemical-based industries operated around petroleum industrial area.
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollution/statistics & numerical data
  5. Abdullah L, Khalid ND
    Environ Monit Assess, 2012 Nov;184(11):6957-65.
    PMID: 22160435 DOI: 10.1007/s10661-011-2472-1
    Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollution/statistics & numerical data*
  6. Mohd Jaafar MN, Eldrainy YA, Mat Ali MF, Wan Omar WZ, Mohd Hizam MF
    Environ Sci Technol, 2012 Feb 21;46(4):2445-50.
    PMID: 22296110 DOI: 10.1021/es2025005
    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollution/prevention & control
  7. Latif MT, Baharudin NH, Velayutham P, Awang N, Hamdan H, Mohamad R, et al.
    Environ Monit Assess, 2011 Oct;181(1-4):479-89.
    PMID: 21181256 DOI: 10.1007/s10661-010-1843-3
    The renovation of a building will certainly affect the quality of air in the vicinity of where associated activities were undertaken, this includes the quality of air inside the building. Indoor air pollutants such as particulate matter, heavy metals, and fine fibers are likely to be emitted during renovation work. This study was conducted to determine the concentration of heavy metals, asbestos and suspended particulates in the Biology Building, at the Universiti Kebangsaan, Malaysia (UKM). Renovation activities were carried out widely in the laboratories which were located in this building. A low-volume sampler was used to collect suspended particulate matter of a diameter size less than 10 μm (PM₁₀) and an air sampling pump, fitted with a cellulose ester membrane filter, were used for asbestos sampling. Dust was collected using a small brush and scope. The concentration of heavy metals was determined through the use of inductively coupled plasma-mass spectroscopy and the fibers were counted through a phase contrast microscope. The concentrations of PM₁₀ recorded in the building during renovation action (ranging from 166 to 542 μg m⁻³) were higher than the value set by the Department of Safety and Health for respirable dust (150 μg m⁻³). Additionally, they were higher than the value of PM₁₀ recorded in indoor environments from other studies. The composition of heavy metals in PM₁₀ and indoor dust were found to be dominated by Zn and results also showed that the concentration of heavy metals in indoor dust and PM₁₀ in this study was higher than levels recorded in other similar studies. The asbestos concentration was 0.0038 ± 0.0011 fibers/cc. This was lower than the value set by the Malaysian Department of Occupational, Safety and Health (DOSH) regulations of 0.1 fibers/cc, but higher than the background value usually recorded in indoor environments. This study strongly suggests that renovation issues need to be considered seriously by relevant stakeholders within the university in order to ensure that the associated risks toward humans and indoor environment are eliminated, or where this is not feasible, minimized as far as possible.
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollution, Indoor/statistics & numerical data*
  8. Edimansyah BA, Rusli BN, Naing L, Azwan BA, Aziah BD
    PMID: 19323052
    The purpose of this study was to determine the indoor air quality (IAQ) status of an automotive assembly plant in Rawang, Selangor, Malaysia using selected IAQ parameters, such as carbon dioxide (CO2), carbon monoxide (CO), temperature, relative humidity (RH) and respirable particulate matter (PM10). A cross-sectional study was conducted in the paint shop and body shop sections of the plant in March 2005. The Q-TRAK Plus IAQ Monitor was used to record the patterns of CO, CO2, RH and temperature; whilst PM10 was measured using DUSTTRAK Aerosol Monitor over an 8-hour time weight average (8-TWA). It was found that the average temperatures, RH and PM10 in the paint shop section and body shop sections exceeded the Department of Safety and Health (DOSH) standards. The average concentrations of RH and CO were slightly higher in the body shop section than in the paint shop section, while the average concentrations of temperature and CO2 were slightly higher in the paint shop section than in the body shop section. There was no difference in the average concentrations of PM10 between the two sections.
    Matched MeSH terms: Air Pollutants, Occupational/analysis*; Air Pollution, Indoor/analysis*
  9. Omar M, Sulaiman I, Hassan A, Wood AK
    Radiat Prot Dosimetry, 2007;124(4):400-6.
    PMID: 17510205
    Measurements of external radiation level, radon/thoron daughters concentrations in air and uranium/thorium concentrations in airborne mineral dust at 16 amang plants in Malaysia were carried out for three consecutive months to assess radiation dose to workers. Estimated occupational dose was within the range of 1.7-10.9 mSv y(-1). The mean total dose at the amang plants was 4.1 mSv y(-1). Overall, it was found that the major dose contribution of 80% came from external radiation. Radon/thoron daughters and airborne mineral dust contributed to only 11 and 9% of the total dose, respectively.
    Matched MeSH terms: Air Pollutants, Occupational/analysis*; Air Pollutants, Radioactive/analysis
  10. Ahmad Sarji S, Wan Abdullah W, Wastie M
    Biomed Imaging Interv J, 2006 Apr;2(2):e21.
    PMID: 21614228 DOI: 10.2349/biij.2.2.e21
    To examine the role of imaging in diagnosing and assessing fungal infections in paediatric patients undergoing chemotherapy in a facility, which had high fungal air contamination due to adjacent building construction work.
    Matched MeSH terms: Air Pollution
  11. Suhaimi NF, Jalaludin J
    Biomed Res Int, 2015;2015:962853.
    PMID: 25984536 DOI: 10.1155/2015/962853
    Some of the environmental toxicants from air pollution include particulate matter (PM10), fine particulate matter (PM2.5), and ultrafine particles (UFP). Both short- and long-term exposure could result in various degrees of respiratory health outcomes among exposed persons, which rely on the individuals' health status.

    METHODS: In this paper, we highlight a review of the studies that have used biomarkers to understand the association between air particles exposure and the development of respiratory problems resulting from the damage in the respiratory system. Data from previous epidemiological studies relevant to the application of biomarkers in respiratory system damage reported from exposure to air particles are also summarized.

    RESULTS: Based on these analyses, the findings agree with the hypothesis that biomarkers are relevant in linking harmful air particles concentrations to increased respiratory health effects. Biomarkers are used in epidemiological studies to provide an understanding of the mechanisms that follow airborne particles exposure in the airway. However, application of biomarkers in epidemiological studies of health effects caused by air particles in both environmental and occupational health is inchoate.

    CONCLUSION: Biomarkers unravel the complexity of the connection between exposure to air particles and respiratory health.

    Matched MeSH terms: Air Pollutants/toxicity*; Air Pollution/adverse effects
  12. Afroz R, Hassan MN, Ibrahim NA
    Environ Res, 2003 Jun;92(2):71-7.
    PMID: 12854685
    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.
    Matched MeSH terms: Air Pollutants/adverse effects*; Air Pollution/adverse effects*
  13. Nguyen TTN, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113106.
    PMID: 31541826 DOI: 10.1016/j.envpol.2019.113106
    Satellite observations for regional air quality assessment rely on comprehensive spatial coverage, and daily monitoring with reliable, cloud-free data quality. We investigated spatiotemporal variation and data quality of two global satellite Aerosol Optical Depth (AOD) products derived from MODIS and VIIRS imagery. AOD is considered an essential atmospheric parameter strongly related to ground Particulate Matter (PM) in Southeast Asia (SEA). We analyze seasonal variation, urban/rural area influence, and biomass burning effects on atmospheric pollution. Validation indicated a strong relationship between AERONET ground AOD and both MODIS AOD (R2 = 0.81) and VIIRS AOD (R2 = 0.68). The monthly variation of satellite AOD and AERONET AOD reflects two seasonal trends of air quality separately for mainland countries including Myanmar, Laos, Cambodia, Thailand, Vietnam, and Taiwan, Hong Kong, and for maritime countries consisting of Indonesia, Philippines, Malaysia, Brunei, Singapore, and Timor Leste. The mainland SEA has a pattern of monthly AOD variation in which AODs peak in March/April, decreasing during wet season from May-September, and increasing to the second peak in October. However, in maritime SEA, AOD concentration peaks in October. The three countries with the highest annual satellite AODs are Singapore, Hong Kong, and Vietnam. High urban population proportions in Singapore (40.7%) and Hong Kong (21.6%) were associated with high AOD concentrations as expected. AOD values in SEA urban areas were a factor of 1.4 higher than in rural areas, with respective averages of 0.477 and 0.336. The AOD values varied proportionately to the frequency of biomass burning in which both active fires and AOD peak in March/April and September/October. Peak AOD in September/October in some countries could be related to pollutant transport of Indonesia forest fires. This study analyzed satellite aerosol product quality in relation to AERONET in SEA countries and highlighted framework of air quality assessment over a large, complicated region.
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollution/analysis
  14. Othman M, Latif MT, Matsumi Y
    Ecotoxicol Environ Saf, 2019 Apr 15;170:739-749.
    PMID: 30583285 DOI: 10.1016/j.ecoenv.2018.12.042
    It is important to assess indoor air quality in school classrooms where the air quality may significantly influence school children's health and performance. This study aims to determine the concentrations of PM2.5 and dust chemical compositions in indoor and outdoor school classroom located in Kuala Lumpur City Centre. The PM2.5 concentration was measured from 19th September 2017-16th February 2018 using an optical PM2.5 sensor. Indoor and outdoor dust was also collected from the school classrooms and ion and trace metal concentrations were analysed using ion chromatography (IC) and inductively couple plasma-mass spectrometry (ICP-MS) respectively. This study showed that the average indoor and outdoor 24 h PM2.5 was 11.2 ± 0.45 µg m-3 and 11.4 ± 0.44 µg m-3 respectively. The 8 h PM2.5 concentration ranged between 3.2 and 28 µg m-3 for indoor and 3.2 and 19 µg m-3 for outdoor classrooms. The highest ion concentration in indoor dust was Ca2+ with an average concentration of 38.5 ± 35.0 µg g-1 while for outdoor dust SO42- recorded the highest ion concentration with an average concentration of 30.6 ± 9.37 µg g-1. Dominant trace metals in both indoor and outdoor dust were Al, Fe and Zn. Principle component analysis-multiple linear regression (PCA-MLR) demonstrated that the major source of indoor dust was road dust (69%), while soil dominated the outdoor dust (74%). Health risk assessment showed that the hazard quotient (HQ) value for non-carcinogenic trace metals was
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollution, Indoor/analysis*
  15. Suhaimi NF, Jalaludin J, Abu Bakar S
    Rev Environ Health, 2021 Mar 26;36(1):77-93.
    PMID: 32857724 DOI: 10.1515/reveh-2020-0065
    Air pollution is a substantial environmental threat to children and acts as acute and chronic disease risk factors alike. Several studies have previously evaluated epigenetic modifications concerning its exposure across various life stages. However, findings on epigenetic modifications as the consequences of air pollution during childhood are rather minimal. This review evaluated highly relevant studies in the field to analyze the existing literature regarding exposure to air pollution, with a focus on epigenetic alterations during childhood and their connections with respiratory health effects. The search was conducted using readily available electronic databases (PubMed and ScienceDirect) to screen for children's studies on epigenetic mechanisms following either pre- or post-natal exposure to air pollutants. Studies relevant enough and matched the predetermined criteria were chosen to be reviewed. Non-English articles and studies that did not report both air monitoring and epigenetic outcomes in the same article were excluded. The review found that epigenetic changes have been linked with exposure to air pollutants during early life with evidence and reports of how they may deregulate the epigenome balance, thus inducing disease progression in the future. Epigenetic studies evolve as a promising new approach in deciphering the underlying impacts of air pollution on deoxyribonucleic acid (DNA) due to links established between some of these epigenetic mechanisms and illnesses.
    Matched MeSH terms: Air Pollutants/adverse effects*; Air Pollution/adverse effects
  16. Ang TN, Young BR, Taylor M, Burrell R, Aroua MK, Chen WH, et al.
    Chemosphere, 2020 Dec;260:127496.
    PMID: 32659541 DOI: 10.1016/j.chemosphere.2020.127496
    Activated carbons have been reported to be useful for adsorptive removal of the volatile anaesthetic sevoflurane from a vapour stream. The surface functionalities on activated carbons could be modified through aqueous oxidation using oxidising solutions to enhance the sevoflurane adsorption. In this study, an attempt to oxidise the surface of a commercial activated carbon to improve its adsorption capacity for sevoflurane was conducted using 6 mol/L nitric acid, 2 mol/L ammonium persulfate, and 30 wt per cent (wt%) of hydrogen peroxide (H2O2). The adsorption tests at fixed conditions (bed depth: 10 cm, inlet concentration: 528 mg/L, and flow rate: 3 L/min) revealed that H2O2 oxidation gave desirable sevoflurane adsorption (0.510 ± 0.005 mg/m2). A parametric study was conducted with H2O2 to investigate the effect of oxidation conditions to the changes in surface oxygen functionalities by varying the concentration, oxidation duration, and temperature, and the Conductor-like Screening Model for Real Solvents (COSMO-RS) was applied to predict the interactions between oxygen functionalities and sevoflurane. The H2O2 oxidation incorporated varying degrees of both surface oxygen functionalities with hydrogen bond (HB) acceptor and HB donor characters under the studied conditions. Oxidised samples with enriched oxygen functionalities with HB acceptor character and fewer HB donor character exhibited better adsorption capacity for sevoflurane. The presence of a high amount of oxygen functional groups with HB donor character adversely affected the sevoflurane adsorption despite the enrichment of oxygen functional groups with HB acceptor character that have a higher tendency to adsorb sevoflurane.
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollution/prevention & control*
  17. NURFARAHIN IDRUS, NORIZAN MOHAMED
    MyJurnal
    Airline industry is one of the largest industries in the world of transport because it is the most important transport in the global transport system. The airline industry has played a very important role in the economic development in Malaysia. Due to the increase in its operating business, the demand for air travel increases day by day. Hence, this study focused on the number of passengers using air transport in Malaysia. The monthly data from January 2005 to December 2015 were obtained from Malaysia Airport Holdings Berhad (MAHB) in Sepang, Selangor. The data is divided into 2 parts, which are in sample data from January 2005 to December 2014 and out sample data from January 2015 to December 2015. The study was conducted to predict airline passengers in Malaysia using the Box-Jenkins model and Artificial Neural Network (ANN) model. Both models were studied to choose the best model. Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE) were used to measure the performance of both models. SARIMA was selected as the best model for Box-Jenkins with MAPE and MSE were 7.3458388 and 2.67011 respectively while Multilayer Feed Forward Neural Network (MFFNN) with seven input variables, with MAPE and MSE, 7.251 and 0.0006 respectively were selected as the best model for Multilayer Feed Forward Neural Network (FFNN). In conclusion, these studies have proven that the Multilayer Feed Forward Neural Network (FFNN) model is the best model for considering airplanes in Malaysia compared to the SARIMA model.
    Matched MeSH terms: Air Travel
  18. Sulaiman, I., Omar, M.
    MyJurnal
    The indoor and outdoor radon/thoron progenies concentrations and natural background radiation levels throughout Sarawak and Sabah were measured. The measurements were carried out at 234 locations in 40 towns in Sarawak and Sabah. The mean indoor and outdoor radon equilibrium equivalent concentrations (EEC) in Sarawak were found to be 1.2 Bqm-3 and 1.5 Bqm-3 respectively. In Sabah, the mean indoor and outdoor radon equilibrium equivalent concentrations were 1.7 Bqm-3. The mean indoor and outdoor thoron equilibrium equivalent concentrations of 0.4 Bqm-3 and 0.3Bqm-3 respectively, were the same for Sarawak and Sabah. The mean indoor and outdoor radiation levels of 46 nGyh-1 and 42 nGyh-1 in Sarawak were slightly lower than the respective values in Sabah, i.e. 53 nGyh-1 and 46 nGy h-1.
    Matched MeSH terms: Air Pollutants, Radioactive
  19. Rosli Abu Bakar, Ahmad Rasdan Ismail, Norfadzilah Jusoh, Abdul Mutalib Leman
    MyJurnal
    This paper discuss thermal comfort studies of an under air conditioning in hot and humid climate which at one of the higher institution in East Coast of Malaysia. Indoor thermal environment is important as it affects the health and productivity of building occupants. The paper reports on an experimental investigation of indoor thermal comfort characteristics under the control of air conditioning. Firstly, the well known Fanger’s thermal comfort model was simplified for the current experimental investigation. This is followed by reporting the experimental results of indoor thermal comfort characteristics under the control of temperature, with eight different of temperatures which are 22oC to 29oC. Finally, indoor thermal comfort was merely affected by the increment ventilation and outdoor climate. PMV value was higher when near from the window because of the effects of the wall radiations and the metabolic heat.
    Matched MeSH terms: Air Conditioning
  20. Eliseus A, Bilad MR, Nordin NAHM, Putra ZA, Wirzal MDH
    Bioresour Technol, 2017 Oct;241:661-668.
    PMID: 28609754 DOI: 10.1016/j.biortech.2017.05.175
    Microalgae harvesting using membrane technology is challenging because of its high fouling propensity. As an established fouling mitigation technique, efficacy of air bubbles can be improved by maximizing the impact of shear-rates in scouring foulant. In this study, it is achieved by tilting the membrane panel. We investigate the effect of tilting angle, switching period as well as aeration rate during microalgal broth filtration. Results show that higher tilting angles (up to 20°) improve permeability of up to 2.7 times of the vertical panel. In addition, operating a one-sided panel is better than a two-sided panel, in which the later involved switching mode. One-sided membrane panel only require a half of area, yet its performance is comparable with of a large-scale module. This tilted panel can lead to significant membrane cost reductions and eventually improves the competitiveness of membrane technology for microalgae harvesting application.
    Matched MeSH terms: Air
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links